Применение функций чувствительности к энергетическим задачам. Прерывистая настройка моделей

Чувствительность систем автоматического управления - это степень влияния разброса параметров и их изменений в процессе работы на статические и динамические свойства системы управления, то есть на точность, показатели качества, на частотные свойства и др.

Параметры системы управления (коэффициенты передачи и постоянные времени) определяются физическими параметрами составляющих ее элементов (резисторов, конденсаторов, катушек индуктивностей и т.п.). Величины физических параметров элементов, во-первых, имеют технологический разброс, обусловленный допусками на изготовление элементов, во-вторых, подвержены эксплуатационным изменениям с течением времени, что обусловлено их старением.

Поэтому встает задача оценки работы системы при изменении и разбросе параметров составляющих ее элементов.

Эта задача решается путем количественной оценки чувствительности системы. Для этого требуется описать систему управления уравнениями в нормальной форме , т.е.

При i=1, 2, ... , n, (7.13)

где n - порядок системы;

x i - координаты состояния системы;

f i - внешние воздействия, прикладываемое к системе;

a ik - коэффициенты уравнения, определяемые величинами физических параметров составляющих систему элементов.

Изменяющиеся со временем параметры элементов системы в процессе эксплуатации и от разброса при изготовлении обозначим через a j (j=1, 2, ... , m).

Тогда уравнение системы (7.13) можно записать в виде

При i=1, 2, ... , n. (7.14)

Решение уравнений (7.14) определяет координаты системы: x 1 (t), x 2 (t), ... , x n (t), образующие исходное движение системы.

Пусть параметры a j изменяются на малые величины Da j , тогда имеем

. . . . . . . . . .

Рассматривая малые изменения параметров a j (j=1, 2, ... , m), получим новые уравнения

при i=1, 2, ... , n.

Процесс в той же системе, но с измененными параметрами, определяемый решением уравнений (7.15), т.е. , называется варьированным движением.

Возникшее различие в протекании процессов в системе за счет изменения параметров

При i=1, 2, ... , n

называется дополнительным движением.

При малых отклонениях Da j эта разность может быть определена следующим образом:

При i=1, 2, ... , n. (7.16)

Обозначим

(j=1, 2, ... , m). (7.17)

Тогда дополнительное движение будет

При i=1, 2, ... , n. (7.18)

Величины , определяемые выражением (7.17), представляют собой функции чувствительности i-ой координаты системы по j-ому параметру.

Таким образом, чтобы оценить степень влияния разброса и изменения параметров на координаты системы необходимо определить функции чувствительности по каждой координате от каждого изменяющегося параметра.


В рассматриваемом случае x i (t) являются координатами состояния системы. Вообще же аналогичные характеристики чувствительности вводятся так же для различных показателей качества системы. Тогда в формуле (7.17) вместо x i будет стоять соответствующий показатель качества, а в формуле (7.18) - вместо Dx i - изменение этого показателя качества. Функции чувствительности для частотных характеристик будут функциями не времени, а частоты. Если показатели качества выражаются не функциями, а числами, то u ij называются коэффициентами чувствительности.

Если в качестве изменяющихся параметров a j выбрать внешние воздействия, то можно получить функции чувствительности системы по отношению к внешним воздействиям.

Определение функций чувствительности производится следующим образом.

Продифференцируем исходное уравнение (7.14) по изменяющимся параметрам a j . Тогда получим

Меняя в левой части порядок дифференцирования и учитывая (7.17), получим выражения

При i=1,...,n; j=1,...,m; (7.19)

которые называются уравнениями чувствительности. Решение этих уравнений определяет функции чувствительности .

Рассмотрим функции чувствительности для частотных характеристик. Передаточную функцию разомкнутой системы запишем в виде

W(s) = W(s, a 1 , a 2 , ... , a m), (7.20)

где a 1 , a 2 , ... , a m - параметры системы, имеющие технологический разброс или эксплуатационные изменения.

Тогда амплитудная и фазовая частотные характеристики тоже зависят от этих параметров

А(w) = А(w, a 1 , ... , a m);

y(w) = y(w, a 1 , ... , a m).

Функции чувствительности для амплитудной и фазовой частотных характеристик будут

J=1, 2, ... , m. (7.21)

В результате получим как функции частоты выражения для отклонения частотных характеристик за счет разброса и изменения параметров системы:

Определение функций чувствительности производится при проектировании систем с наименьшими изменениями качественных показателей при отклонении значений параметров системы от расчетных.

Пример. Определить функции чувствительности для системы, заданной следующим уравнением (Tp+1)x(t)=kg(t), где T, k - изменяющиеся параметры.

Решение. Уравнение системы в нормальной форме имеет вид

Введем функции чувствительности

Уравнение чувствительности получим исходя из (7.19)

Найдя отсюда u xk и u xT , вычислим изменение хода процесса управляемой величины x(t) за счет изменения параметров k и T по формуле

Передаточная функция системы: .

Частотные характеристики: , .

Найдем функции чувствительности частотных характеристик по параметру T

Отклонения частотных характеристик

DA(w) = u AT (w)DT, Dy(w) = u Y T (w)DT.

ВОПРОСЫ К РАЗДЕЛУ 7

1. Перечислите общие методы повышения точности систем управления. Поясните их.

2. Дайте понятие астатических системы управления. Каким образом определяется степень астатизма?

3. В чем преимущество повышения степени астатизма системы с помощью изодромных устройств?

4. Какая система является инвариантной по отношению к внешним воздействиям?

5. Что понимается под комбинированным управлением?

6. Как определяются передаточные функции компенсирующих устройств в комбинированных системах?

7. Для каких целей используются неединичные главные обратные связи?

8. Сформулируйте понятие чувствительности систем управления.

9. Каким образом можно получить уравнения чувствительности?

10.Что представляют собой функции чувствительности и коэффициенты чувствительности?

Чувствительностью называется реакция различных устройств на изменение параметров ее компонент.

Коэффициент чувствительности (функция чувствительности или просто чувствительность ) представляет собой количественную оценку изменения параметров устройства (в т.ч. и АЭУ) при заданном изменении параметров его компонент.

Необходимость расчета функции чувствительности возникает при необходимости учета влияния на характеристики АЭУ факторов окружающей среды (температуры, радиации и т.д.), при расчете требуемых допусков на параметры компонент, при определении процента выхода ИМС, в задачах оптимизации, моделирования и т.д.

Функция чувствительности параметра устройства y к изменению параметра компонента определяется как частная производная

Данное выражение получено на основе разложения в ряд Тейлора функции нескольких переменных , где

Пренебрегая частными производными второго и более порядка, получаем связь функции чувствительности и отклонения параметра :

.

Существуют разновидности функции чувствительности:

¨ абсолютная чувствительность , абсолютное отклонение при этом равно ;

¨ относительная чувствительность , относительное отклонение равно ;

¨ полуотносительные чувствительности , .

Выбор вида функции чувствительности определяется видом решаемой задачи, например, для комплексного коэффициента передачи относительная чувствительность равна относительной чувствительности модуля (действительная часть) и полуотносительной чувствительности фазы (мнимая часть):

Для простых схем вычисление функции чувствительности может осуществляться прямым дифференцированием схемной функции, представленной в аналитическом виде. Для сложных схем, получение аналитического выражения схемной функции представляет собой сложную задачу, возможно применение прямого расчета функции чувствительности через приращения. В этом случае необходимо проводить n анализов схемы, что для сложных схем весьма нерационально.

Существует косвенный метод расчета чувствительности по передаточным функциям, предложенный Быховским . Согласно этому методу, функция чувствительности, например, прямого коэффициента передачи равна произведению функций передачи с входа схемы до элемента, относительно которого ищется чувствительность, и передаточной функции "элемент - выход схемы" (рисунок 8.4а).

Так как расчет функции чувствительности сводится к расчету передаточных функций, то для их нахождения возможно применение, например, обобщенного метода узловых потенциалов. Косвенный метод расчета по передаточным функциям позволяет находить функции чувствительности более высоких порядков. На рисунке 8.4б проиллюстрировано нахождение функции чувствительности второго порядка. В общем же существует n! путей передачи сигнала, каждый из которых содержит n+1 сомножителей.

Ниже описывается метод расчета функции чувствительности, сочетающий прямой метод дифференцирования и косвенный по передаточным функциям, позволяющий за один анализ находить чувствительность к n элементам схемы . Рассмотрим данный способ на примерах получения выражений для абсолютной чувствительности первого порядка S-параметров электронных схем, описанных матрицей проводимости [Y].

В матричном представлении характеристики электронных схем, в том числе и параметры рассеяния [S], определяются в виде отношений алгебраических дополнений матрицы [Y] (см. подраздел 7.2). Изменяемый параметр входит при этом в некоторые элементы алгебраических дополнений. Определение функции чувствительности сводится в этом случае к нахождению производных от отношений алгебраических дополнений (или алгебраических дополнений и определителя) по элементам, в которых содержится изменяемый параметр. В случае, когда изменяемый параметр входит в элементы дополнений определителя функционально, чувствительность определяется как сложная производная.

Для определения производных алгебраических дополнений по изменяемым параметрам входящих в них элементов воспользуемся теоремой, утверждающей, что производная определителя по какому-либо элементу равна алгебраическому дополнению этого элемента. Доказательство теоремы основано на разложении определителя по Лапласу

.

Общее выражение для S-параметров через алгебраические дополнения имеет вид (см. подраздел 7.2)

.

Определим функции чувствительности параметров рассеяния к пассивному двухполюснику включенному между произвольными узлами k и l (см. рисунок 8.5а)

При получении данного и последующих выражений используются следующие матричные соотношения :

Для электронных схем, содержащих БТ, моделируемые ИТУТ (см. подраздел 2.4.1), определим чувствительность S-параметров к проводимости управляющей ветви и параметру управляемого источника a включенных соответственно между узлами k, l, и p, q (рисунок 8.5б):

Если электронная схема содержит ПТ, моделируемые ИТУН (см. подраздел 2.4.1), то чувствительность параметров рассеяния к крутизне S, включенной между узлами p, q при узлах управления k, l (рисунок 8.5в), равна

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для числовой оценки чувствительности используют функции чувствительности определяемые как частные производные от координат системы или показателей качества процессов управления по вариациям параметров: где координаты системы; параметр системы.93 можно записать Следовательно располагая функциями чувствительности и задаваясь вариациями параметров можно определить первое приближение для дополнительного движения.99 называются уравнениями чувствительности. Решение их дает функции чувствительности.

Чувствительность систем автоматического управления .

Параметры системы автоматического управления в процессе работы не остаются равными расчетным значениям. Это объясняется изменением внешних условий, неточностью изготовления отдельных устройств системы, старением элементов и т. п. Изменение параметров САУ, т. е. изменение коэффициентов уравнений системы, вызывает изменение статических и динамических свойств системы.

Зависимость характеристик системы от изменения каких-либо ее параметров оценивают чувствительностью. Под чувствительностью понимают свойство системы изменять режим работы вследствие отклонения каких-либо параметров от номинальных значений. Для числовой оценки чувствительности используют функции чувствительности, определяемые как частные производные от координат системы или показателей качества процессов управления по вариациям параметров:

где — координаты системы; — параметр системы.

Индекс 0 означает, что функция вычисляется при номинальных значениях параметров.

Система, значения параметров которой равны номинальным и не имеют вариаций, называется исходной системой, а движение в ней — основным движением. Система, в которой имеют место вариации параметров, называются варьированной системой, а движение в ней — варьированным движением. Разность между варьированным и основным движениями называют дополнительным движением.

Допустим, что исходная система описывается системой нелинейных дифференциальных уравнений

Пусть в некоторый момент времени в системе произошли вариации параметров где тогда параметры станут равными. Если вариации параметров не вызывают изменения порядка уравнения, то варьированное движение описывается новой системой уравнений первого порядка

Разность решений уравнений (4.94) и (4.95) определяет дополнительное движение:

Если дифференцируемы по то дополнительное движение (4.96) можно разложить в ряд Тейлора по степеням При малых вариациях параметров ограничимся в разложении лишь линейными членами. Нужно отметить, что в случае конечных вариаций такое приближение недопустимо. Итак, можно записать уравнения первого приближения для дополнительного движения:

Учитывая формулу (4.93), можно записать

Следовательно, располагая функциями чувствительности и задаваясь вариациями параметров, можно определить первое приближение для дополнительного движения.

Продифференцируем уравнения исходной системы (4.94) по

Полученные линейные дифференциальные уравнения (4.99) называются уравнениями чувствительности. Решение их дает функции чувствительности. Следует заметить, что в силу

Рис. 4.42

сложности уравнений (4.99) их решение весьма затруднительно.

М. Л. Быховским предложен структурный метод построения модели для определения функций чувствительности .

Для определения функций чувствительности можно использовать уравнения системы или ее передаточные функции.

Пусть САУ описывается уравнением

где — собственный оператор системы;

— оператор воздействия

Запишем уравнения чувствительности, продифференцировав (4.100) по

при

По уравнению (4.101) можно представить структурную схему модели чувствительности для определения функции (рис. 4.42). Эту схему можно упростить.

Пусть общей частью операторов является оператор, а операторов — оператор. Тогда можно записать

Подставляя выражения (4.102) и (4.103) в (4.101), можно переписать уравнение чувствительности так:

Структурная схема модели чувствительности в соответствии с (4.104) показана на рис. 4.43. В этой модели выделена

Рис. 4.43

общая часть для определения всех функций. Дополнительные блоки модели (рис. 4.43) реализуют операторы, с общей частью они соединены переключателем П. Как видно из схемы рис. 4.43, функция чувствительности координаты х определяется последовательно во времени по всем параметрам. Для одновременного определения всех функций чувствительности по параметрам используем передаточные функции системы .

Выходная координата системы связана с задающим воздействием зависимостью

где — передаточная функция системы; — изображение по Лапласу выходной и входной величин.

Определим изображение функции чувствительности дифференцируя (4.105) по

где — передаточная функция элемента, параметром которого является

Рис. 4.44

Обозначим общую часть через тогда

а для функции чувствительности можно записать

или

На рис. 4.44 показана схема модели для одновременного определения функций чувствительности по параметрам. Рассмотренный метод позволяет упростить модель чувствительности за счет упрощения общей части модели, в частности общая часть может быть представлена пропорциональным звеном. Подобное упрощение модели используется в беспоисковых системах оптимизаций.


А также другие работы, которые могут Вас заинтересовать

19163. Отдельные узлы низкотемпературных устройств 120.5 KB
ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекции 13 14 Отдельные узлы низкотемпературных устройств 13.1. Гелиевая емкость Гелиевая емкость рис. 13.1 является одним из основных узлов гелиевого криостата и состоит из трубки подвеса 1 крышки 2 обечайки 3 днища 4. Все
19164. Компактные криорефрижераторы 615 KB
ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекция 15 Компактные криорефрижераторы В последнее время для получения низких температур все чаще стали использоваться компактные криорефрижераторы криокулеры. Основное преимущество этих устройств заключается в от
19165. Элементы вакуумной техники 714 KB
ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекция 15 Элементы вакуумной техники Теплоизоляция криостатов как и всех систем предназначенных для работы с жидким гелием осуществляется вакуумированием сосудов. Поэтому разрабатываемые конструкции должны удовлетво
19166. Введение. Технологичность конструкции 1.43 MB
Лекция №1 Введение. Технологичность конструкции Технология искусство мастерство умение логия совокупность методов обработки изготовления изменения состояния свойств формы сырья материалов или полуфабриката осуществляемых в процессе производства проду
19167. Обеспечение качества и эксплуатационной надежности изделий 1008.5 KB
Лекция 2 Обеспечение качества и эксплуатационной надежности изделий Соответствие технических требований и норм точности служебному назначению Поскольку технические требования и нормы точности изделия являются отражением ее служебного назначения то приступая...
19168. Топливные циклы ядерных реакторов. Материалы сердечника твэлов 48.5 KB
Топливные циклы ядерных реакторов. Материалы сердечника твэлов Ядерным топливом принято считать материал содержащий нуклиды которые делятся при взаимодействии с нейтронами. Делящимися нуклидами являются: находящийся в природном уране изотоп 235U изотопы плутония 23...
19169. Конструкционные материалы твэлов и ТВС 282 KB
ЛЕКЦИЯ 4 Конструкционные материалы твэлов и ТВС В лекции рассматриваются конструкционные материалы используемые для оболочек твэлов. Оболочка твэла работает в очень сложных напряженных условиях в течение длительного времени при высоких параметрах теплоносител
19170. Твэлы и ТВС энергетических реакторов 348 KB
Лекция 5 Твэлы и ТВС энергетических реакторов В нашей стране разработаны и успешно эксплуатируются три типа энергетических реакторов: канальный водографитовый реактор РБМК1000 РБМК1500; корпусной реактор с водой под давлением ВВЭР1000 ВВЭР440; реактор н
19171. Твэлы и ТВС исследовательских, транспортных и транспортабельных реакторов 1.84 MB
Лекция 6 Твэлы и ТВС исследовательских транспортных и транспортабельных реакторов По сравнению с энергетическими реакторами к твэлам исследовательских и транспортных реакторов предъявляются дополнительные требования связанные со спецификой их эксплуатации: ...

Передаточная функция реального объекта P(s) может изменяться в процессе функционирования на величину ДP(s),например, вследствие изменения нагрузки на валу двигателя, числа яиц в инкубаторе, уровня или состава жидкости в автоклаве, вследствие старения и износа материала, появления люфта, изменения смазки и т.п. Правильно спроектированная система автоматического регулирования должна сохранять свои показатели качества не только в идеальных условиях, но и при наличии перечисленных вредных факторов. Для оценки влияния относительного изменения передаточной функции объекта ДP/P на передаточную функцию замкнутой системы Gcl

y(s) = r(s), Gcl(s) = (8)

найдём дифференциал dGcl:

Поделив обе части этого равенства на Gcl и подставив в правую часть Gcl = PR/(1+PR), получим:

Рисунок 17 - Оценка запаса по усилению и фазе для системы с годографом, показанным на рисунке 15

Из (10) виден смысл коэффициента S - он характеризует степень влияния относительного изменения передаточной функции объекта на относительное изменение передаточной функции замкнутого контура, то есть S является коэффициентом чувствительности замкнутого контура к вариации передаточной функции объекта. Поскольку коэффициент S = S(jщ) является частотно-зависимым, его называют функцией чувствительности .

Как следует из (10),

Введём обозначение:

Величина T называется комплементарной (дополнительной) функцией чувствительности , поскольку S + T = 1. Функция чувствительности позволяет оценить изменение свойств системы после замыкания обратной связи. Поскольку передаточная функция разомкнутой системы равна G = PR, а замкнутой Gcl = PR/(1+PR), то их отношение Gcl/G = S. Аналогично для разомкнутой системы передаточная функция от входа возмущений d на выход замкнутой системы равна (см. ) P(s)/(1 + P(s)R(s)), а разомкнутой - P(s), следовательно, их отношение также равно S. Для передаточной функции от входа шума измерений n на выход системы можно получить то же отношение S.

Таким образом, зная вид функции S(jщ) (например, рисунок 18), можно сказать, как изменится подавление внешних воздействий на систему для разных частот после замыкания цепи обратной связи. Очевидно, шумы, лежащие в диапазоне частот, в котором |S(jщ)| > 1, после замыкания обратной связи будут усиливаться, а шумы с частотами, на которых |S(jщ)| < 1, после замыкания обратной связи будут ослаблены.

Наихудший случай (наибольшее усиление внешних воздействий) будет наблюдаться на частоте максимума Ms модуля функции чувствительности (рисунок 18):

Максимум функции чувствительности можно связать с запасом устойчивости sm (рисунок 15). Для этого обратим внимание на то, что |1 + G(jщ)| представляет собой расстояние от точки [-1, j0] до текущей точки на годографе функции G(jщ). Следовательно, минимальное расстояние от точки [-1, j0] до

функции G(jщ) равно:

Сопоставляя (13) и (14), можно заключить, что sm = 1/Ms. Если с ростом частоты модуль G(jщ) уменьшается, то, как видно из рисунка 15, (1- sm) ? 1/gm. Подставляя сюда соотношение sm = 1/Ms, получим оценку запаса по усилению, выраженную через максимум функции чувствительности:

Аналогично, но с более грубыми допущениями можно записать оценку запаса по фазе через максимум функции чувствительности :

Например, при Ms = 2 получим gm ? 2 и? 29°.

Рисунок 18 - Функции чувствительности для системы с годографами, показанными на рисунке 13

Робастность - это способность системы сохранять заданный запас устойчивости при вариациях её параметров, вызванных изменением нагрузки (например, при изменении загрузки печи меняются её постоянные времени), технологическим разбросом параметров и их старением, внешними воздействиями, погрешностями вычислений и погрешностью модели объекта. Используя понятие чувствительности, можно сказать, что робастность - это низкая чувствительность запаса устойчивости к вариации параметров объекта.

Если параметры объекта изменяются в небольших пределах, когда можно использовать замену дифференциала конечным приращением, влияние изменений параметров объекта на передаточную функцию замкнутой системы можно оценить с помощью функции чувствительности (10). В частности, можно сделать вывод, что на тех частотах, где модуль функции чувствительности мал, будет мало и влияние изменений параметров объекта на передаточную функцию замкнутой системы и, соответственно, на запас устойчивости.

Для оценки влияния больших изменений параметров объекта представим передаточную функцию объекта в виде двух слагаемых:

P = P0 + ДP, (17)

где P0 - расчётная передаточная функция, ДP - величина отклонения от P0, которая должна быть устойчивой передаточной функцией. Тогда петлевое усиление разомкнутой системы можно представить в виде G = RP0 + RДP = G0 + RДP. Поскольку расстояние от точки [-1, j0] до текущей точки A на годографе невозмущённой системы (для которой ДP = 0) равно |1 + G0| (рисунок 19), условие устойчивости системы с отклонением петлевого усиления RДP можно представить в виде:

|RДP| < |1+G0|,

где T - дополнительная функция чувствительности (12). Окончательно можно записать соотношение:

которое должно выполняться, чтобы система сохраняла устойчивость при изменении параметров процесса на величину ДP(jщ).

Сокращение нулей и полюсов. Поскольку передаточная функция разомкнутой системы G = RP является произведением двух передаточных функций, которые в общем случае имеют и числитель, и знаменатель, то возможно сокращение полюсов, которые лежат в правой полуплоскости или близки к ней. Поскольку в реальных условиях, когда существует разброс параметров, такое сокращение выполняется неточно, то может возникнуть ситуация, когда теоретический анализ приводит к выводу, что система устойчива, хотя на самом деле при небольшом отклонении параметров процесса от расчётных значений она становится неустойчивой.

Поэтому каждый раз, когда происходит сокращение полюсов, необходимо проверять устойчивость системы при реальном разбросе параметров объекта.

Рисунок 19 - Пояснение к выводу соотношения (18)

Вторым эффектом сокращения полюсов является появление существенного различия между временем установления переходного процесса в замкнутой системе при воздействии сигнала уставки и внешних возмущений. Поэтому необходимо проверять реакцию синтезированного регулятора при воздействии не только сигнала уставки, но и внешних возмущений.

Безударное переключение режимов регулирования. В ПИД-регуляторах могут существовать режимы, когда их параметры изменяются скачком. Например, когда в работающей системе требуется изменить постоянную интегрирования или когда после ручного управления системой необходимо перейти на автоматический режим. В описанных случаях могут появиться нежелательные выбросы регулируемой величины, если не принять специальных мер. Поэтому возникает задача плавного («безударного») переключения режимов работы или параметров регулятора. Основной метод решения проблемы заключается в построении такой структуры регулятора, когда изменение параметра выполнятся до этапа интегрирования. Например, при изменяющемся параметре Ti = Ti (t) интегральный член можно записать в двух формах:

I(t) = или I(t) = .

В первом случае при скачкообразном изменении Ti (t) интегральный член будет меняться скачком, во втором случае - плавно, поскольку Ti (t) находится под знаком интеграла, значение которого не может изменяться скачком.

Аналогичный метод реализуется в инкрементной форме ПИД-регулятора (см. подраздел «Инкрементная форма цифрового ПИД-регулятора») и в последовательной форме ПИД-регулятора , где интегрирование выполняется на заключительной стадии вычисления управляющего воздействия.