Трехмерная графика в современном мире. Трёхмерное искусство Примеры программных продуктов

В отличие от двумерной анимации, где многое может быть нарисовано от руки, в трехмерной объекты слишком гладкие, их форма слишком правильная и движутся они по слишком "геометрическим" траекториям. Правда, эти проблемы преодолимы. В анимационных пакетах улучшаются средства визуализации, обновляются инструменты для создания спецэффектов и увеличиваются библиотеки материалов. Для создания "неровных" объектов, например, волос или дыма, используется технология формирования объекта из множества частиц. Вводится инверсная кинематика и другие техники оживления, возникают новые методы совмещения видеозаписи и анимационных эффектов, что позволяет сделать сцены и движения более реалистичными. Кроме того, технология открытых систем позволяет работать сразу с несколькими пакетами. Можно создать модель в одном пакете, разрисовать ее в другом, оживить в третьем, дополнить видеозаписью в четвертом. И, наконец, функции многих профессиональных пакетов можно сегодня расширить с помощью дополнительных приложений, написанных специально для базового пакета.

3D Studio и 3D Studio MAX

Один из самых известных пакетов 3D-анимации на IBM - это 3D Studio фирмы Autodesk. Программа работает под DOS, обеспечивает весь процесс создания трехмерного фильма: моделирование объектов и формирование сцены, анимацию и визуализацию, работу с видео. Кроме того, существует широкий спектр прикладных программ (IPAS-процессов), написанных специально для 3D Studio. Новая программа той же фирмы под названием 3D Studio MAX для Windows NT создавалась в течение нескольких последних лет и претендует на роль конкурента мощным пакетам для рабочих станций SGI. Интерфейс новой программы един для всех модулей и обладает высокой степенью интерактивности. 3D Studio MAX реализует расширенные возможности управления анимацией, хранит историю жизни каждого объекта и позволяет создавать разнообразные световые эффекты, поддерживает 3D-акселераторы и имеет открытую архитектуру, то есть позволяет третьим фирмам включать в систему дополнительные приложения.



TrueSpace, Prisms, Three-D, RenderMan, Crystal Topas

Electric Image, SoftImage

Для создания трехмерной анимации на компьютерах IBM и Macintosh удобно пользоваться и пакетом Electric Image Animation System, включающим большой комплекс анимационных средств, спецэффекты, инструментарий для работы со звуком и генератор шрифтов с настраиваемыми параметрами. Хотя у этой программы нет средств моделирования, но зато есть возможность импорта свыше тридцати различных форматов моделей. Пакет также поддерживает работу с иерархическими объектами и средствами инверсной кинематики. В свою очередь, программа Softimage 3D фирмы Microsoft работает на платформах SGI и Windows NT. Она поддерживает моделирование на базе полигонов и сплайнов, создание спецэффектов, работу с частицами и технологию переноса движения с живых актеров на компьютерных персонажей.

Фотореалистичное изображение 3D сцены - это специальное изображение сцены, в котором учитываются тени, отбрасываемые объектами, а также такие явления как отражение и преломление света.

В программе имеется три различных механизма создания фотореалистичных изображений. Первый из них использует приложение POV-Ray , второй – встроенную технологию NVIDIA OptiX , третий использует Embree - ядро трассировки лучей, разработанное Intel .

Выбор и настройка качества изображения

Создать удачное фотореалистичное изображение с первой же попытки удаётся редко. Обычно требуется создать несколько тестовых фотореалистичных изображений, которые помогают скорректировать положение камеры, яркость и положение источников света, а также проверить правильность анимации. После этого проводится финальная визуализация.

Но создание фотореалистичного изображения может занимать различное время, в зависимости от сложности сцены и параметров, определяющих качество изображения. Знание этих параметров с одной стороны, помогает избежать излишних затрат времени на проведение пробной визуализации, а с другой стороны, помогает добиться более высокого качества финального изображения.

Существуют различные параметры, позволяющие менять качество получаемого фотореалистичного изображения.

Качество сетки . Данный параметр задаётся в параметрах документа (команда ST: Параметры документа), и кроме фотореализма, влияет ещё и на качество отображения объектов в 3D окне.

Кроме того настройку качества изображения можно вызвать при помощи панели Вид .

Чем выше данный параметр, тем дольше ведётся экспорт сцены в формат POV, тем больше оперативной памяти используется POV-Ray и тем дольше POV-Ray ведёт предварительную подготовку сцены перед визуализацией (Parsing). В связи с этим, при проведении предварительной визуализации качество сетки желательно снизить, возможно, даже до минимума. При проведении финальной визуализации лучше установить максимальное качество сетки.

1. Фотореалистичный вид

Данный механизм для генерации фотореалистичных изображений основан на технологии NVIDIA OptiX. Она предназначена для генерации фотореалистичных изображений высокого качества с учётом освещения, а также таких свойств материала, как прозрачность, коэффициент преломления, свойства поверхности и т.д.

Механизм позволяет получать фотореалистичное изображение непосредственно из среды T-FLEX CAD, обеспечивая удобный интерфейс управления параметрами сцены, качеством генерации изображения, а также возможность сохранения результатов генерации в файл и печати. С помощью данного механизма можно получать фотореалистичное изображение не только с трёхмерных моделей, но и с импортированных 3D изображений.

Технология NVIDEA OptiX используется при создании фотореалистичных видео при записи анимации разборки в команде “3VX: Разборка ”

Третий механизм для генерации фотореалистичных изображений использует Embree - ядро трассировки лучей, разработанное Intel.

Для своих расчётов Embree использует центральный процессор и отличается высокой производительностью и качеством изображения.

Интерфейс для работы с NVIDIA Optix идентичен интерфейсу работы с Embree, поэтому они вместе будут описаны ниже.

Работа с командой

Для вызова опции используется команда:

Пиктограмма

Лента

Инструменты → Оформление → Фотореализм → Фотореалистичный вид (GPU NVIDIA)

Клавиатура

Текстовое меню

<3RV>

Сервис > Фотореалистичный вид (GPU NVIDIA)

Пиктограмма

Лента

Инструменты → Оформление → Фотореализм → Фотореалистичный вид (CPU)

Клавиатура

Текстовое меню

Сервис > Фотореалистичный вид (CPU)

После активации команды появляется новое окно, в котором генерируется изображение.

Качество создаваемого изображения во многом зависит от количества итераций. Итерация – вычисление цвета пикселей изображения. Количество итераций зависит от размера изображения, плотности сетки и количества объектов.

Количество итераций отображается в нижней части экрана.

В зависимость от мощности компьютера, сложности модели и установленного качества изображения процесс генерирования изображения может занимать от нескольких минут до нескольких часов.

На инструментальной панели отображаются опции для работы с командой.

Печать изображения . Позволяет вывести получаемое изображение на печать.

Сохранить изображение . Позволяет экспортировать полученное изображение в файлы растровых форматов *.bmp, *.jpg, *gif, *tiff, *tif, *.png, *.tga. Для файла можно задать имя и указать, где он будет храниться.

Параметры вида . Позволяет задавать параметры генерации изображения. Более подробное описание опции дано ниже.

Зафиксировать параметры вида . Позволяет зафиксировать направление взгляда и масштаб изображения. Вращение модели становится невозможным.

Перезапустить генерацию . Запускает генерацию фотореалистичного изображения заново, при этом происходит сброс текущих результатов.

Приостановить генерацию . Позволяет временно прекратить генерацию изображения. При этом высвобождаются затрачиваемые на этот процесс ресурсы компьютера, в связи с чем повышается производительность.

Выбор качества генерируемого изображения . В выпадающем списке можно выбрать одно из четырёх значений качества изображения.

Низкое и среднее качество применяются для черновых вариантов изображений. При выборе такого качества система автоматически высчитывает минимальное количество итерации, необходимое для получения изображений с определённым уровнем «шумов».

Для получения наиболее реалистичных изображений нужно выбрать высокое или максимальное качество. При максимальном качестве количество итераций не ограничено.

Выбор текущей активной камеры . Позволяет выбрать одну из присутствующих в 3D сцене камер. Изображение будет создаваться в соответствии с положением выбранной камеры.

В дополнение к вышеперечисленным опциям, важную роль в создании реалистичных изображений играет настройка « Качество изображения ». Её можно изменить с помощью выпадающего списка в окне ST: Параметры документа на закладке « 3D ».

Чем выше качество, тем выше плотность сетки. Для получения наиболее реалистичных изображений рекомендуется устанавливать качество не ниже чем « Повышенное ».

Данный параметр особенно важен при наличии в модели скругленных поверхностей.

Наглядное различие между изображениями разного качества.

Очень грубое

Стандартное

Очень высокое

Процесс создания фотореалистичных изображений имеет высокие требования к системным характеристикам. Более подробную информацию о них можно найти на нашем сайте или в главе «Быстрое начало ».

Генерации изображения может быть остановлена в любой момент. Получившийся результат можно сохранить на компьютере с помощью опции или сразу же направить на печать опцией .

Результате выполнения операции:

Фотореалистичное изображение

Файлы с примерами создания фотореалистичного изображения находятся в библиотеке « Примеры 3D 15\Сервисные инструменты\Материалы и фотореализм ».

Для удобства работы можно одновременно отображать окно фотореалистичного вида и окно модели на экране. Для этого необходимо воспользоваться командой « WO: Открыть новое окно документа ».

В появившемся диалоговом окне из выпадающего списка необходимо выбрать пункт « Фотореалистичный вид ». С помощью четырёх выпадающих списков можно настроить удобное расположение окон на экране.

Параметры изображения

Вписать в окно . Опция активна только при установленном флаге « ». При включённой опции изображение заданного размера полностью отображается на экране.

Фиксированный размер изображения . При активации позволяет задать размер создаваемого изображения. При этом включается опция инструментальной панели « Зафиксировать параметры вида » . Размер изображения задаётся в пикселях. Изображение указанного размера будет создано целиком не зависимо от того, помещается оно на экране или нет. Для получения изображений высокого качества рекомендуется выставлять как можно больший фиксированный размер изображения.

Качество изображения . Данная опция повторяет список настроек с главной панели. Единственным отличием является возможность задать количество итераций вручную, выбрав качество изображения « пользовательское » и введя в поле необходимое число.

Количество отражений луча . Параметр важен при генерации преломлений и отражений.

Настройки фона и текстуры полностью совпадают с одноименными стандартными параметрами 3D вида. Подробнее о них можно прочитать в главе « Работа с окном 3D вида ».

Коэффициент яркости окружения . Позволяет настаивать яркость сцены, регулируя количество света попадающее на объекты.

Оптимальные параметры для создания фотореалистичного изображения установлены по умолчанию.

Примеры фотореалистичных изображений

NVIDIA Optix:

Embree:

2. Реалистичное изображение

Данный механизм использует технологию POV-Ray, программу применяющую метод трассировки луча. Условия генерации изображения прописываются в T-FLEX CAD в текстовом виде. Приложение POV-Ray включено в поставку. Кроме того, приложение может быть скачано с соответствующего сайта.

Изображение в T-FLEX CAD Фотореалистичное изображение (POV-Ray)

Фотореалистичное изображение получается методом трассировки луча (ray-tracing). Для этого используется приложение POV-Ray, включаемое в поставку.

Следует отметить, что приложение POV-Ray требует отдельной инсталляции. Для этого на установочном компакт–диске нужно выбрать файл « povwin36.exe » из директории «POV-Ray». Установка POV-Ray осуществляется на английском языке. Пользователям, не знакомым с английским языком, рекомендуется нажимать все утверждающие кнопки ([ Next ] , [ Yes ] или [ I Agree ]) в последовательно появляющихся окнах диалога.

Для получения фотореалистичного изображения 3D сцена, используя установки текущего 3D окна, экспортируется в формат POV. Далее для генерации результирующего изображения автоматически запускается приложение POV-Ray. По окончании генерации результирующее изображение можно просмотреть в окне просмотра и при желании сохранить в файл.

При экспорте в POV-Ray текстуры накладываются на объекты так же, как они отображаются в 3D окне T-FLEX CAD. Кроме того, совместно с POV-Ray можно использовать текстуры всех форматов, поддерживаемых POV-Ray (gif, tga, iff, ppm, pgm, png, jpeg, tiff, sys).

Работа POV-Ray осуществляется параллельно другим системам, т.е. после запуска данного приложения можно продолжить работу в T-FLEX CAD. Правда, в зависимости от сложности генерирующегося изображения, POV-Ray может забирать больше ресурсов, и тогда работа в T-FLEX CAD будет замедляться.

Работа с командой

Для создания фотореалистичного изображения используется команда “ 3VY: Создать реалистичное изображение ”. Данная команда доступна в том случае, когда 3D окно активно. Перед вызовом команды необходимо установить 3D сцену в желаемое положение, установить необходимый материал операций, источники света (можно использовать источники света на камере). При создании фотореалистичного изображения рекомендуется пользоваться перспективной проекцией.

Вызов команды осуществляется следующим способом:

Пиктограмма

Лента

Инструменты → Оформление → Фотореализм → Реалистичное изображение (POV-ray)

Клавиатура

Текстовое меню

<3VY >

Сервис > Реалистичное изображение (POV-ray)

T-FLEX CAD сохраняет информацию о местонахождении приложения POV-Ray и при каждом обращении к нему проверяет его наличие.

В случае, когда POV-Ray вызывается впервые, а также если система не может найти данное приложение, T-FLEX CAD запрашивает путь к нему. В этом случае на экран выводится окно диалога, с помощью которого необходимо задать путь к приложению POV-Ray. Обычно приложение находится по следующему пути: « Program Files\POV-Ray for Windows v3.6\bin ». Отсутствие соответствующей директории говорит о том, что приложение не установлено (см. параграф “ Основные положения ”).

После вызова команды на экране появляется окно диалога.

Ширина и Высота . Задают ширину и высоту создаваемой картинки фотореалистичного изображения в пикселях. По умолчанию устанавливается размер текущего 3D окна.

Сглаживание цвета . Отвечает за сглаживание цвета генерируемого изображения. Значение данного параметра должно быть больше 0.

Чем меньше это значение, тем мягче будет выглядеть переход от одного цвета к другому, но в этом случае визуализация (т.е. расчёт изображения) будет проходить дольше. Значение данного параметра можно выбрать из списка или задать самостоятельно.

В POV-Ray для описания 3D сцены используется специальный язык. С его помощью есть возможность задать для поверхности материала, а также для внутренней части материала, большое количество различных характеристик. Поэтому в T-FLEX CAD у материала есть специальные инструкции, определяющие то, как будет выглядеть материал при визуализации в POV-Ray (команда «3MT : Редактировать материалы », кнопка [ Материал POV ]). При установке флажка « Использовать подстановки материалов », эти инструкции будут передаваться в POV-Ray. Все материалы, входящие в поставку системы, включают специальные инструкции для POV-Ray. Кроме материалов, в POV будут экспортироваться и дополнительные инструкции для источника света (см. " Параметры источника света ", параметр " Инструкции POV ").

Если флажок « Использовать подстановки материалов » отключён, в POV-Ray будут переданы инструкции, автоматически сгенерированные T-FLEX CAD, на основе таких свойств материала как цвет и отражательная способность.

В 3D окне к камере по умолчанию привязаны один или несколько источников света. Данные источники света ориентированы относительно камеры и перемещаются вместе с ней (см. описание "Параметры 3D вида "). Если флажок « Экспортировать источники света на камере » включен, данные источники света передаются в POV-Ray.

Сохранить результат в . Здесь отображается путь к временно создаваемому выходному файлу, который будет использовать POV-Ray для сохранения результирующего изображения в формате bmp, а T-FLEX CAD для его считывания. Поэтому, если приложение T-FLEX CAD будет закрыто раньше, чем получен результат, то изображение из этого файла можно просмотреть позже, используя любую другую программу для просмотра изображений.

Все временно создаваемые файлы в процессе генерации изображения создаются в папке, которая указана в системной переменной TEMP. После создания изображения все файлы, кроме выходного, удаляются. Сам выходной файл хранится в этой папке до создания нового фотореалистичного изображения.

Информация для пользователей, имеющих опыт работы в POV-Ray

Параметры источников света . При создании фотореалистичного изображение с использованием обычных источников света, тени объектов получаются очень чёткие, так как источники света имеют бесконечно малую величину. В реальности, это бывает очень редко, поэтому тени, чаще всего, бывают сглаженными. Применение рассеянных источников света позволяет сделать тени более сглаженными и повысить качество и реалистичность изображения. В рассеянных источниках света вместо одного точечного источника света используются несколько сдвинутых друг относительно друга точечных источников. Чем больше они сдвинуты, тем менее чёткой будет тень. Чем больше количество точечных источников имеет рассеянный источник – тем выше размытость тени и тем больше времени нужно на визуализацию.

Обычный свет Рассеянный свет

Рассеянный источник света в POV-Ray представляет собой множество точечных источников света. Эти источники света размещаются в виде прямоугольника, ориентированного некоторым образом относительно указанного центра. Количество источников света вдоль каждой из сторон прямоугольника может быть разное. Чтобы созданный в T-FLEX CAD источник света стал рассеянным источником света в POV-Ray, в свойствах источника света в поле «Инструкции POV» необходимо записать следующее:

area_light <0.035, 0, 0>, <0, 0.035, 0.035>, 5, 5 adaptive 1 jitter

Здесь в треугольных скобках заданы координаты противоположных углов прямоугольника относительно исходной точки (точки, в которой расположен рассеянный источник света). «5, 5» - это количество источников света в каждом направлении. При этом общее количество точечных источников света составляет 5х5=25. «adaptive 1 jitter» - дополнительные параметры, включающие оптимизацию расчёта теней.

Сглаживание (Antialiasing) . При обычной визуализации на границах объектов могут возникать явления ступенчатости, прерывистости тонких линий. Сглаживание путём проведения дополнительных расчётов может уменьшить негативное влияние данных явлений.

Ступенчатость на границах Сглаживание включено

Сглаживание основано на визуализации частей сцены с увеличенным разрешением. При этом визуализация сцены замедляется. Поэтому на этапе пробной визуализации включать сглаживание не следует. Но для финальной визуализации включить сглаживание желательно.

Рассеянное освещение (Radiosity) . При обычной визуализации учитывается прямое освещение, при котором освещены только те участки объектов, на которые непосредственно попадает свет от источника света. Однако в реальном мире свет исходит не только от источников. Он ещё и отражается от объектов, освященных прямым светом. В POV-Ray есть возможность включить механизм расчёта рассеянного освещения, который в некоторых случаях помогает улучшить реалистичность изображения.

Обычное освещение Рассеянное освещение

В связи с большим количеством дополнительных расчётов, использование механизма рассеянного освещения может привести к существенному замедлению визуализации. Поэтому использование рассеянного освещения при тестовой визуализации следует проводить только в низких разрешениях.

Чтобы включить механизм рассеянного освещения, следует в поле « Включить строки » окна « Создание фотореалистичного изображения » записать следующее:

global_settings {

radiosity { count 500 minimum_reuse 0.018 brightness 0.8}}

Значение приведённых инструкций, а также дополнительные сведения, касающиеся механизма рассеянного освещения, следует искать в документации приложения POV-Ray.

Разрешение изображения . Данный параметр существенно влияет на время, затрачиваемое на визуализацию. При неизменном качестве изображения, скорость визуализации прямо пропорциональна площади результирующего изображения. При тестовой визуализации можно ограничиться небольшими разрешениями, например, 320*240.

Дополнительный INI файл : При запуске приложения POV-Ray создается файл с расширением ini, куда записываются экспортируемые установки. При необходимости можно задать другие установки и даже переопределить генерируемые в T-FLEX CAD, задавая их в этом файле. В этом случае в поле данного диалога указывается имя этого файла.

Включить строки : В поле данного диалога можно вставить строки, являющиеся выражениями, записанными в формате POV, которые будут вставлены в экспортируемый файл.

Пояснение: При запуске команды создается файл в формате POV, который имеет следующую структуру:

<генерируемые переменные>

<включаемые строки>

<экспортированная 3D сцена>.

Генерируемые переменные

В экспортируемый файл включаются следующие переменные:

● fAspectRatio – ширина / высота экрана. При переопределении установок Width и Height в дополнительном INI файле нужно переопределить и эту переменную, используя <включаемые строки>.

● vSceneMin и vSceneMax – вершины куба ограничивающие 3D сцену в 3D пространстве.

● vSceneCenter – центр куба.

● fSceneSize – длина диагонали куба.

● vCameraPos – положение камеры.

● vCamera2Scene – вектор из vCameraPos до центра куба.

● fCamera2Scene – длина вектора vCamera2Scene.

● cBackColor – цвет фона.

Эти переменные могут быть переопределены или использованы во <включаемых строках>.

Например:

#declare cBackColor <0.1, 0.1, 0.1>

distance fCamera2Scene / 2

rgb <0, 0, 1>

fog_offset vSceneMin . z

fog_alt (vSceneMax . z - vSceneMin . z) / 4

up <0, 0, 1>

переопределяет цвет фона и задает синий туман, зависящий от положения и размера 3D – сцены.

После задания всех необходимых параметров для создания фотореалистичного изображения нужно нажать на кнопку [ OK ]. Иногда, при запуске POV-Ray, может возникнуть окно диалога " ", для запуска приложения в этом случае достаточно нажать на кнопку [ OK ].

При создании анимации с включенным фотореализмом в команде « : Анимировать модель » желательно дождаться начала визуализации первого кадра в POV-Ray, чтобы убедиться, что окно « About POV-Ray(tm) for Windows » не появилось и не мешает созданию анимации.

После запуска POV-Ray управление передаётся к T-FLEX CAD (т.е. можно продолжить работу с ним). По окончании генерации изображения или в случае ее прерывания на экран выдается сообщение:

Если необходимо просмотреть результирующее изображение, то нужно нажать на кнопку [ Да ]. В результате открывается окно просмотра, изображение которого можно сохранить в файл. Если просмотр и сохранение результирующего изображения не требуется, то следует нажать на кнопку [ Нет ]. В этом случае, результат фотореалистичного изображения, какое-то время (до создания следующего фотореалистичного изображения) будет храниться в системном каталоге TEMP .

До завершения генерации изображения можно запустить POV-Ray ещё раз (количество таких запусков не ограниченно). Тогда T-FLEX CAD, выполняя экспорт в POV, при окончании процесса генерации предыдущего изображения, произведёт новый запуск приложения POV-Ray. Таким образом, реализуется очередь задач на генерацию изображений, т.е. новая задача запускается после завершения генерации предыдущей.

Примеры фотореалистичных изображений моделей T-FLEX CAD

Прототипы для фотореализма

В стандартной инсталляции существуют прототипы, специально предназначенные для быстрого создания фотореалистичного изображения. Для создания документов на основе данных прототипов необходимо вызвать команду « : Создать новый документ на основе файла прототипа », и на закладке « Фотореализм » выбрать один из двух прототипов: « Комната » или « Облёт вокруг объекта ».

В каждом из этих прототипов заранее создано несколько источников света, камера и система координат для привязки 3D фрагмента. Положение этих элементов можно изменить по своему усмотрению, перемещая соответствующие элементы в окне чертежа. Также в 2D окне есть небольшая инструкция по использованию прототипа.

Обычно работа с этими прототипами ведётся следующим образом: создаётся новый документ на основе одного из прототипа. В этот документ в качестве 3D фрагмента или 3D изображения вставляется 3D модель (в подходящем масштабе), фотореалистичное изображение которой необходимо получить. Далее проводится несколько пробных визуализаций для выявления подходящего расположения источников света и камеры. В конце проводится финальная визуализация.

О настройках, которые необходимо задавать для пробной и финальной визуализации, будет сказано ниже. Но прежде, необходимо сказать об отличительных особенностях каждого из прототипов.

Прототип « Комната » предназначен для создания статичного изображения. В этом прототипе сцена представляет собой «комнату», два источника света и камеру. Кроме этого, для удобства заранее создана система координат для привязки 3D фрагмента. По умолчанию, две стены и потолок «комнаты» не видны, но их можно сделать видимыми, если в 2D окне снять флажок «Скрыть потолок».

Прототип « Облёт вокруг объекта » предназначен как для создания статичного изображения, так и для создания фотореалистичной анимации, в которой камера движется вокруг объекта. Сцена представляет собой большую круглую платформу, три источника света и камеру. В сцене заранее создана система координат для привязки 3D фрагмента. Кроме того, положение камеры связано с выражением и зависит от кадра, в котором находится сцена. 2D окне необходимо задать продолжительность анимации (то есть время, за которое камера облетит вокруг объекта и вернется на исходное место). Анимацию сцены необходимо проводить по переменной «frame», учитывая, что количество кадров в секунду равно 25.

Пример использования прототипа « Облёт вокруг объекта » находится в библиотеке “Примеры 3D 15”, в папке «Сервисные инструменты\ Фотореалистичное изображение\Облёт вокруг объекта». Открыв файл « Сцена на основе прототипа.grb », необходимо в 3D окне выбрать камеру « Камера ». Далее надо использовать команду «AN: Анимировать модель » и провести анимацию по переменной «frame» от 0 до 250 с шагом 1.

Трехмерная графика сегодня прочно вошла в нашу жизнь, что порой мы даже не обращаем внимания на ее проявления.

Разглядывая рекламный щит с изображением интерьера комнаты или рекламный ролик о мороженном, наблюдая за кадрами остросюжетного фильма, мы и не догадываемся, что за всем этим стоит кропотливая работа мастера 3d графики.

Трехмерная графика это

3D графика (трехмерная графика) - это особый вид компьютерной графики - комплекс методов и инструментов, применяемых для создания изображений 3д-объектов (трехмерных объектов).

3д-изображение не сложно отличить от двумерного, так как оно включает создание геометрической проекции 3d-модели сцены на плоскость, при помощи специализированных программных продуктов. Получаемая модель может быть объектом из реальной действительности, например модель дома, автомобиля, кометы, или же быть абсолютно абстрактной. Процесс построения такой трехмерной модели получил название и направлен, прежде всего, на создание визуального объемного образа моделируемого объекта.

Сегодня на основе трехмерной графики можно создать высокоточную копию реального объекта, создать нечто новое, воплотить в жизнь самые нереальные дизайнерские задумки.

3d технологии графики и технологии 3d печати проникли во многие сферы человеческой деятельности, и приносят колоссальную прибыль.

Трехмерные изображения ежедневно бомбардируют нас на телевидении, в кино, при работе с компьютером и в 3D играх, с рекламных щитов, наглядно представляя всю силу и достижения 3д-графики.

Достижения современного 3д графики используются в следующих отраслях

  1. Кинематограф и мультипликация - создание трехмерных персонажей и реалистичных спецэффектов. Создание компьютерных игр - разработка 3d-персонажей, виртуальной реальности окружения, 3д-объектов для игр.
  2. Реклама - возможности 3d графики позволяют выгодно представить товар рынку, при помощи трехмерной графики можно создать иллюзию кристально-белоснежной рубашки или аппетитного фруктового мороженного с шоколадной стружкой и т.д. При этом в реального рекламируемый товар может иметь немало недостатков, которые легко скрываются за красивыми и качественными изображениями.
  3. Дизайн интерьеров - проектирование и разработка дизайна интерьера также не обходятся сегодня без трехмерной графики. 3d технологии дают возможность создать реалистичные 3д-макеты мебели (дивана, кресла, стула, комода и т.д.), точно повторяя геометрию объекта и создавая имитацию материала. При помощи трехмерной графики можно создать ролик, демонстрирующий все этажи проектируемого здания, который возможно еще даже не начал строиться.

Этапы создания трехмерного изображения


Для того чтобы получить 3д-изображение объекта необходимо выполнить следующие шаги

  1. Моделирование - построение математической 3д-модели общей сцены и ее объектов.
  2. Текстурирование включает наложение текстур на созданные модели, настройка материалов и придание моделям реалистичности.
  3. Настройка освещения .
  4. (движущихся объектов).
  5. Рендеринг - процесс создания изображения объекта по предварительно созданной модели.
  6. Композитинг или компоновка - постобработка полученного изображения.

Моделирование - создание виртуального пространства и объектов внутри него, включает создание различных геометрий, материалов, источников света, виртуальных камер, дополнительных спецэффектов.

Наиболее распространенными программными продуктами для 3d моделирования являются: Autodesk 3D max, Pixologic Zbrush, Blender.

Текстурирование представляет собой наложение на поверхность созданной трехмерной модели растрового или векторного изображения, позволяющего отобразить свойства и материал объекта.


Освещение
- создание, установка направления и настройка источников освещения в созданной сцене. Графические 3д-редакторы, как правило, используют следующие виды источников света: spot light (расходящиеся лучи), omni light (всенаправленный свет), directional light (параллельные лучи) и др. Некоторые редакторы дают возможность создания источника объемного свечения (Sphere light).

Реалистичное изображение – компьютерное изображение изделия с высоким качеством (фотографическим), которое может быть использовано в различных сценах. Обычно используется для рекламы изделий, которые еще только спроектированы, но не изготовлены. Подсистема создания реалистичных изображений изделий на основании их твердотельных моделей(например, Photo Works) позволяет: задавать свойства поверхностей (цвет, текстуру, коэффициент отражения, прозрачность с использованием библиотеки материалов (библиотека может быть пополнена пользователем самостоятельно) или присоединением текстуры (картинок, логотипов), задавать декорации (каждая модель связывается со сценой, для которой можно задавать свойства: освещение, тени, фон). На основе информации о расставленных источниках света генерируются тени и полутени, придающие необычайную достоверность компьютерному изображению еще не существующей реально конструкции.

Автоматизированное создание прототипов проектируемых изделий (Rapid Prototyping)

Эти методы предназначены для создания реальных моделей изделий с помощью их компьютерных моделей за короткое время с целью проверки их работоспособности перед запуском их в производство и с целью использования этих моделей в производстве изделий (например, в качестве моделей литейных форм).

Принцип заключается в создании трехмерной модели изделия и представлении ее в виде отдельных поперечных двухмерных профилей, так называемых, срезов малой толщины (0,1-0,5 мм), параметры которых передаются в систему ЧПУ специального комплекса, с помощью которого формируется реальная модель каждого среза, набор которых образует реальную модель изделия – его прототип. Создание прототипа осуществляется на специальном основании (подложке), которое после изготовления каждого среза опускается на толщину среза. На основании этого метода разработан ряд способов изготовления прототипов:

Стереолитографии;

Покрытие твердой массой;

Из слоев специальной бумаги или фольги;

Селективное спекание с помощью лазера;

Наплавлением.

Стереолитография (Stereolithography - STL) . Прототип изготавливается на подложке в емкости, заполненной жидким полимером (так называемым, фотополимером), который затвердевает под воздействием лазерного луча. Лазер установлен рабочем органе, управление перемещением которого осуществляется от системы ЧПУ. Программа перемещения лазера составляется на основании сечений отдельных слоев трехмерной твердотельной модели изделия. Лазер сканирует очередной слой, в результате чего на этом участке полимер затвердевает, после чего подложка опускается на толщину среза и этот процесс выполняется для последующего сечения до тех пор, пока не будет изготовлен прототип изделия.

Способ покрытия твёрдой массой (Solid Ground Curing - SGC) не требует использования лазера и включает выполнение двух параллельно выполняемых процесса: создание маски и нанесение слоя фотополимера. Создание маски осуществляется для каждого среза трехмерной твердотельной модели методом электростатического осаждения материала, не прозрачного для прохождения ультрафиолетового излучения на прозрачную пластину маски. Затем на подложку наносится жидкий полимер затвердевающий под влиянием ультрафиолетового излучения. Пластина с маской помещается над подложкой с фотополимером и осуществляется освещение фотополимера ультрафиолетовым излучением через маску, в результате чего освещенный участок фотополимера затвердевает. Затем незатвердевший фотополимер удаляется, а на его место наносится слой легкоплавящегося материала, (например, воска) с целью уменьшения коробления. С пластины удаляется маска и создается следующая маска, соответствующая сечению последующего слоя модели. Процесс повторяется. По окончании цикла изготовления прототипа изделия слой легкоплавящегося материала удаляется горячей жидкостью.

Процесс создания объектов из слоёв специальной бумаги или фольги (Laminated Objekt manufacturing – LOM), покрытой клеевым составом, требует применения лазера. Каждый слой создается путем подачи бумаги в рабочую зону, вырезания контура соответствующего среза лазерным лучем и склеивания его с предыдущим слоем в результате обкатки горячим роликом. Материал: синтетическая фольга, алюминиевая фольга, керамическая фольга, ткань из углеродистого волокна.

Селективное спекание с помощью лазера (Selective Laser Sintering - SLS) заключается в последовательном нанесении слоев порошка из термопластичного материала и спекания каждого слоя под воздействием лазерного луча программно-управляемого лазера. Используется порошковый материал, в качестве чего принципиально могут использоваться все термопластичные материалы, как например, термопласты, воск для точного литья, металлы, формопесок.

Создание объектов наплавлением (Fused Deposition Modelling - FDM) не требует применения лазера и заключается в создании каждого слоя наплавлением термопластичного материала с помощью нагреваемого сопла, перемещение которого осуществляется с помощью устройства с ЧПУ.

Материал: термопластичная пластмасса, специальный воск для точного литья.

Использование трехмерных моделей для расчета изделий методами имитационного моделирования

Имитационное моделирование заключается в создании модели проектируемого объекта и экспериментирования с ней при реальных условиях и ограничениях.

Имитация в САПР осуществляется путем создания модели проектируемого объекта и наблюдения за его функционированием до реального его изготовления с целью нахождения его рациональных параметров. Различают кинематическую и динамическую имитацию.

Кинематическая имитация осуществляется с целью проверки работоспособности объекта в процессе движения его элементов (проверка коллизий, например, столкновений). Примеры: контрольные сборки, работа движущегося механизма.

Динамическая имитация осуществляется путем исследования поведения объекта при изменении действующих на него нагрузок и температур. Определяются теплонапряженное состояние и деформации элементов объекта. Применение при таких расчетах аналитических моделей, полученных методами математической физики, применительно к сложным по конфигурации объектам, в настоящее время невозможно, так как при этом необходимо принимать ограничения, которые зачастую нарушают адекватность математической модели объекта. Поэтому для решения задач динамической имитации в САПР используют приближенные методы: метод конечных элементов (МКЭ) и метод конечных разностей (МКР). Как показала практика, МКЭ является самым эффективным методом решения задач имитационного моделирования в САПР. В основе этого метода лежит представление объекта исследования в виде набора некоторых простых с геометрической точки зрения фигур, называемых конечными элементами, взаимодействующими между собой только в узлах. Расположенные определенным образом (в зависимости от конструкции объекта) и закрепленные в соответствии с граничными условиями конечные элементы, форма которых определяется особенностями моделируемого объекта, позволяют описать все многообразие механических конструкций и деталей.

При выполнении инженерных расчетов на прочность неизбежен этап создания моде­лей прочностной надежности элементов конструкций. С помощью таких моделей возмож­но выбрать материал и необходимые размеры конструкций и оценить ее сопротивление внешним воздействиям.

Надежностью называют свойство изделия выполнять свои функции в заданных пре­делах в течение требуемого промежутка времени. Прочностной надежностью называют отсутствие отказов, связанных с разрушением или с недопустимыми деформациями, или, вообще, с наступлением предельного состояния в определенном смысле. Основной мерой надежности является вероятность безотказной работы изделия.

Другой, более распространенной величиной оценки прочностной надежности являет­ся запас прочности. Пусть р - параметр работоспособности изделия (например, дейст­вующее усилие, давление, эквивалентное напряжение в опасной точке и т. п.). Тогда запа­сом прочности называют отношение

где Ркр-критическое (предельное) значение параметра Р, нарушающее нормальную работу изделия, Рмах - наибольшее значение параметра в рабочих условиях. Условие прочностной надежности записывается в виде:

где [n] - допустимое значение запаса прочности. Допустимый запас прочности назна­чают на основании инженерного опыта эксплуатации подобных конструкций (прототи­пов). Ряд отраслей техники имеют нормы прочности, в которых допустимые запасы проч­ности регламентированы для разных условий эксплуатации. Обычный диапазон изме­нений [n] колеблется от 1, 3 (при стабильных условиях нагружения) до 5 и более (при пе­ременных и динамических нагрузках). В практике расчетов используют как аналитические, так и численные методы. Первые базируются на математических методах решения краевых задач, обычно сложных и тру­доемких, и зачастую ограничены достаточно простыми геометрическими формами тел и схем нагружения. Численные методы, к которым относятся, в частности, метод конечных разностей, метод граничных интегральных уравнений, метод граничных элементов, метод конечных элементов и другие методы, напротив, не ограничены ни формой тел, ни спосо­бом приложения нагрузки. Это, наряду с повсеместным распространением мощной вы­числительной техники, способствует их распространению в инженерной среде.

Основная идея метода конечных элементов состоит в том, что любую непрерывную величину (перемещение, температура, давление и т. п.) можно аппроксимировать моделью, состоящей из отдельных элементов (участков).

Объект представляется в виде набора простых (с геометрической точки зрения) фигур, называемых конечными элементами (для плоской задачи-прямоугольники, треугольники, для объемной задачи-параллепипеды, призмы, тетраэдры), которые взаимодействуют между собой в узлах. Элементы могут быть линейными и параболическими (имеющие узлы в серединах ребер). На каждом из этих элементов исследуемая непрерывная величина аппроксимируется кусочно-непрерывной функцией, которая строится на значениях исследуемой непрерывной величины в конечном числе точек рассматриваемого элемента. Для этого используются линейная (первого порядка) или параболическая (второго порядка) функции.

К узлам прикладываются граничные условия: кинематические (закрепления, перемещения) и статические (нагрузки), в результате чего тело деформируется. Условие равновесия каждого элемента:

где Р-вектор усилий, U-вектор перемещений, -матрица жесткости конечного элемента, в которую входят модуль упругости (Юнга) E, характеризующий сопротивление материала упругой деформации (отношение напряжения к вызванной им упругой деформации) и коэффициент Пуассона μ (отношение поперечной деформации к продольной).

Матрицы жесткости всех конечных элементов объединяются в глобальную матрицу жесткости [K], перемещения и усилия в узлах объединяются соответственно в общие столбцы перемещений [U] и усилий [P].

В результате создается система линейных уравнений, в которой неизвестными являются перемещения:

Решается система уравнений с вычислением перемещений каждого узла. Это стало возможным, когда в 1963 г. было доказано, что этот МКЭ можно рассматривать как один из вариантов известного в строительной механике метода Рэлея-Ритца, который путем минимизации потенциаль­ной энергии позволяет свести задачу к системе линейных уравнений равновесия. То есть полученное решение соответствует минимуму потенциальной энергии деформированной упругой системы.

Перемещения связаны с соответствующими напряжениями законом Гука:

Для визуальной оценки полученных результатов расчета распределение значений полученных параметров (напряжений, деформаций) представляется в виде изолиний (на которых значение параметра постоянно), цвет и насыщенность которых изменяется в зависимости величины параметра. Кроме того, для визуальной качественной оценки деформированного состояния объекта, деформации показываются искаженно.

3D-моделирование и визуализация необходимы при производстве продуктов или их упаковки, а также при создании прототипов изделий и создании объемной анимации.

Таким образом, услуги по 3D-моделированию и визуализации предоставляются тогда, когда:

  • нужна оценка физических и технических особенностей изделия еще до его создания в оригинальном размере, материале и комплектации;
  • необходимо создать 3D-модель будущего интерьера.

В таких случаях вам точно придется прибегнуть к услугам специалистов в области 3д-моделирования и визуализации.

3D-модели - неотъемлемая составляющая качественных презентаций и технической документации, а также - основа для создания прототипа изделия. Особенность нашей компании - в возможности проведения полного цикла работ по созданию реалистичного 3D-объекта: от моделирования и до прототипирования. Поскольку все работы можно провести в комплексе, это существенно сокращает время и затраты на поиск исполнителей и постановку новых технических заданий.

Если речь идет о продукте, мы поможем вам выпустить его пробную серию и наладить дальнейшее производство, мелкосерийное или же промышленных масштабов.

Определение понятий «3D-моделирование» и «визуализация»

Трехмерная графика или 3D-моделирование - компьютерная графика, сочетающая в себе приемы и инструменты, необходимые для создания объемных объектов в техмерном пространстве.

Под приемами стоит понимать способы формирования трехмерного графического объекта - расчет его параметров, черчение «скелета» или объемной не детализированной формы; выдавливание, наращивание и вырезание деталей и т.д.

А под инструментами - профессиональные программы для 3D-моделирования. В первую очередь - SolidWork, ProEngineering, 3DMAX, а также некоторые другие программы для объемной визуализации предметов и пространства.

Объемный рендеринг - это создание двухмерного растрового изображения на основе построенной 3d-модели. По своей сути, это максимально реалистичное изображение объемного графического объекта.

Области применения 3D-моделирования :

  • Реклама и маркетинг

Трехмерная графика незаменима для презентации будущего изделия. Для того, чтобы приступить к производству необходимо нарисовать, а затем создать 3D-модель объекта. А, уже на основе 3D-модели, с помощью технологий быстрого прототипирования (3D-печать, фрезеровка, литье силиконовых форм и т.д.), создается реалистичный прототип (образец) будущего изделия.

После рендеринга (3D-визуализации), полученное изображение можно использовать при разработке дизайна упаковки или при создании наружной рекламы , POS-материалов и дизайна выставочных стендов.

  • Городское планирование

С помощью трехмерной графики достигается максимально реалистичное моделирование городской архитектуры и ландшафтов - с минимальными затратами. Визуализация архитектуры зданий и ландшафтного оформления дает возможность инвесторам и архитекторам ощутить эффект присутствия в спроектированном пространстве. Что позволяет объективно оценить достоинства проекта и устранить недостатки.

  • Промышленность

Современное производство невозможно представить без допроизводственного моделирования продукции. С появлением 3D-теxнологий производители получили возможность значительной экономии материалов и уменьшения финансовых затрат на инженерное проектирование. С помощью 3D-моделирования дизайнеры-графики создают трехмерные изображения деталей и объектов, которые в дальнейшем можно использовать для создания пресс-форм и прототипов объекта.

  • Компьютерные игры

Технология 3D при создании компьютерных игр используется уже более десяти лет. В профессиональных программах опытные специалисты вручную прорисовывают трехмерные ландшафты, модели героев, анимируют созданные 3D-объекты и персонажи, а также создают концепт-арты (концепт-дизайны).

  • Кинематограф

Вся современная киноиндустрия ориентируется на кино в формате 3D. Для подобных съемок используются специальные камеры, способные снимать в 3D-формате. Кроме того, с помощью трехмерной графики для киноиндустрии создаются отдельные объекты и полноценные ландшафты.

  • Архитектура и дизайн интерьеров

Технология 3д-моделирования в архитектуре давно зарекомендовала себе с наилучшей стороны. Сегодня создание трехмерной модели здания является незаменимым атрибутом проектирования. На основании 3d модели можно создать прототип здания. Причем, как прототип, повторяющий лишь общие очертания здания, так и детализированную сборную модель будущего строения.+

Что же касается дизайна интерьеров, то, с помощью технологии 3d-моделирования, заказчик может увидеть, как будет выглядеть его жилище или офисное помещение после проведения ремонта.

  • Анимация

С помощью 3D-графики можно создать анимированного персонажа, «заставить» его двигаться, а также, путем проектирования сложных анимационных сцен, создать полноценный анимированный видеоролик.

Этапы разработки 3D-модели

Разработка 3D-модели осущеcтвляется в несколько этапов :

1. Моделирование или создание геометрии модели

Речь идет о создании трехмерной геометрической модели, без учета физических свойств объекта. В качестве приемов используется:

  • выдавливание;
  • модификаторы;
  • полигональное моделирование;
  • вращение.

2. Текстурирование объекта

Уровень реалистичности будущей модели напрямую зависит от выбора материалов при создании текстур. Профессиональные программы для работы с трехмерной графикой практически не ограничены в возможностях для создания реалистичной картинки.

3. Выставление света и точки наблюдения

Один из самых сложных этапов при создании 3D-модели. Ведь именно от выбора тона света, уровня яркости, резкости и глубины теней напрямую зависит реалистичное восприятие изображения. Кроме того, необходимо выбрать точку наблюдения за объектом. Это может быть вид с высоты птичьего полета или масштабирование пространства с достижением эффекта присутствия в нем - путем выбора вида на объект с высоты человеческого роста.+

4. 3D-визуализация или рендеринг

Завершающий этап 3D-моделирования. Он заключается в детализации настроек отображения 3D-модели. То есть добавление графических спецэффектов, таких, как блики, туман, сияние и т.д. В случае видео-рендеринга, определяются точные параметры 3D-анимации персонажей, деталей, ландшафтов и т.п. (время цветовых перепадов, свечения и др.).

На этом же этапе детализируются настройки визуализации: подбирается нужное количество кадров в секунду и расширение итогового видео (например, DivX, AVI, Cinepak, Indeo, MPEG-1, MPEG-4, MPEG-2, WMV и т.п.). В случае необходимости получить двухмерное растровое изображение, определяется формат и разрешение изображения, в основном - JPEG, TIFF или RAW.

5. Постпродакшн

Обработка отснятых изображений и видео с помощью медиа-редакторов - Adobe Photoshop, Adobe Premier Pro (или Final Cut Pro/ Sony Vegas), GarageBand, Imovie, Adobe After Effects Pro, Adobe Illustrator, Samplitude, SoundForge, Wavelab и др.

Постпродакшн заключается в придании медиа-файлам оригинальных визуальных эффектов, цель которых - взбудоражить сознание потенциального потребителя: впечатлить, вызвать интерес и запомниться на долго!

3D-моделирование в литейном производстве

В литейном производстве 3D-моделирование постепенно становится незаменимой технологической составляющей процесса создания изделия. Если речь идет о литье в металлические пресс формы, то 3D-модели таких пресс-форм создаются с помощью технологий 3D-моделирования, а также 3D-прототипирования.

Но не меньшую популярность сегодня набирает литье в силиконовые формы. В данном случае - 3D-моделирование и визуализация помогут вам создать прототип объекта, на основе которого будет сделана форма из силикона либо другого материала (дерево, полиуретан, алюминий и т.д.).

Методы 3D-визуализации (рендеринг)

1. Растеризация.

Один из самых простых методов рендеринга. При его использовании не учитываются дополнительные визуальные эффекты (например, цвет и тень объекта относительно точки наблюдения).

2. Рейкастинг.

3D-модель осматривается с определенной, заранее заданной точки - с высоты человеческого роста, высоты птичьего полета и т.д. Из точки наблюдения направляются лучи, которые определяют светотени объекта, когда происходит его рассмотрения в привычном формате 2D.

3. Трассировка лучей.

Данный метод рендеринга подразумевает то, что, при попадании на поверхность, луч разделяется на три компонента: отраженный, теневой и преломленный. Собственно это и формирует цвет пиксела. Помимо этого, от количества разделений напрямую зависит реалистичность изображения.

4. Трассировка пути.

Один из самых сложных методов 3D-визуализации. При использовании данного метода 3D-рендеринга распространение световых лучей максимально приближено к физическим законам распространения света. Именно это и обеспечивает высокую реалистичность конечного изображения. Стоит отметить, что данный метод отличается ресурсоемкостью.

Наша компания предоставит вам полный спектр услуг в области 3D-моделирования и визуализации. Мы располагаем всеми техническими возможностями для создания 3D-моделей различной сложности. А также имеем большой опыт работы в 3d-визуализации и моделировании, в чем можно лично убедиться, изучив наше портфолио, или другие наши работы, пока не представленные на сайте (по запросу).

Бренд-агентство KOLORO окажет вам услуги по выпуску пробной серии продукции или ее мелкосерийному производству . Для этого наши специалисты создадут максимально реалистичную 3D-модель нужного вам объекта (упаковки, логотипа, персонажа, 3D-образца любого изделия, формы для литья и мн. др.), на основе которого будет создан прототип изделия. Стоимость нашей работы напрямую зависит от сложности объекта 3D-моделирования и обсуждается в индивидуальном порядке.