Резонансные процессы в электрических цепях. Применение резонанса напряжений и резонанса токов. Применение токового резонанса

Реактивное сопротивление или проводимость двухполюсника, в состав которого входят конденсаторы и катушки индуктивности, в зависимости от частоты приложенного напряжения могут принимать как положительные, так и отрицательные значения. При определенных условиях реактивное сопротивление (проводимость) может оказаться равным нулю, а эквивалентное сопротивление (проводимость) всей цепи становится активным. В этом случае ток и напряжение на входе цепи совпадают по фазе. Такое явление называют резонансом , а соотношение −условием резонанса .

Эквивалентные параметры двухполюсника связаны соотношениями

и
,

поэтому условие
эквивалентно выполнению равенств
или
.

Из условий
,
могут быть определены значения параметров элементов электрической цепи, при которых наблюдается явление резонанса, а также значения частотырезонанса.

Если для двухполюсника
и
, то для определения значений резонансных частот может быть использовано любое из условий
или
.

В случае, когда активное эквивалентное сопротивление или активная эквивалентная проводимость двухполюсника равны нулю, для определения значений резонансных частот следует использовать оба условия
и
, так как при этом
. Равенства
и
выполняются, в частности, для цепей, содержащих только катушки индуктивности и конденсаторы.

Для описания частотных свойств электрических цепей широко используются частотные характеристики. Под частотными характеристиками понимают зависимости от частоты входных параметров цепи: r , x , z , g , b , y , а также величин, определяемых этими параметрами
,
и т.д. Рассмотрим далее частотные свойства простейших цепей, в которых возможен резонанс.

Резонанс в цепи при последовательном соединении элементов

Рассмотрим цепь, изображенную на рис. 10.1а

Комплексное сопротивление цепи равно

Угол сдвига между входным током и напряжением
обращается в нуль при равенстве нулю реактивного сопротивления цепи, то есть при выполнении условия
. Таким образом, состояние резонанса в цепи наступает при частоте
. Эта угловая частота называетсярезонансной . Векторная диаграмма для токов и напряжений в последовательном rLC контуре, построенная при
, изображена на рис. 10.1б. Как видно из векторной диаграммы, вектораи
равны по величине и противоположны по направлению, таким образом, напряжение
при резонансной частоте равно нулю. Индуктивное и равное ему емкостное сопротивление цепи при резонансной частоте

,

обозначаемое символом , носит названиеволнового сопротивления колебательного контура и измеряется в омах.

Отношение волнового сопротивления к активному сопротивлению в последовательном колебательном контуре называется добротностью , а величина, обратная добротности − затуханием :

,
.

Как следует из приведенных соотношений, добротность и затухание являются безразмерными величинами. Поскольку во всех элементах цепи, изображенной на рис. 10.1а протекает один и тот же ток, добротность показывает, во сколько раз напряжение на реактивных элементах при резонансе превышает входное напряжение. В реальных колебательных контурах эта величина может достигать значительного уровня. Поэтому резонанс в цепи с последовательным соединением элементов r , L , C иногда называютрезонансом напряжений .

При резонансной частоте полное сопротивление z

равно сопротивлению резистора r , ток и входное напряжение совпадают по фазе.

Таким образом, вся мощность, поставляемая в цепь источником, равна активной мощности, потребляемой единственным резистивным элементом, а реактивная мощность цепи равна нулю. Это означает, что в резонансе взаимный обмен энергии происходит только между конденсатором и катушкой индуктивности. Уменьшение энергии электрического поля при разряде конденсатора сопровождается увеличением энергии магнитного поля катушки и наоборот. Обмен энергией между источником и реактивными элементами отсутствует.

Рассмотрим частотные свойства цепи с последовательно соединенными элементами r , L , C . Будем считать, что на входе цепи действует синусоидальное напряжение с постоянной амплитудой и угловой частотой , меняющейся в пределах от 0 до ∞ . Изменение частоты приводит к изменению параметров цепиx , z , . На рисунке 10.2 приведены соответствующие частотные характеристики

,

Активное сопротивление рассматриваемой цепи не зависит от частоты, а реактивное при определенных значениях частоты (
) становится равным либо нулю либо бесконечности. Эти характерные значения называют соответственно нулями и полюсами частотной характеристики. Важным свойством функции
является то, что она монотонно возрастает при увеличении частоты
. В интервале частот
реактивное сопротивление возрастает от − ∞ до 0 и имеетемкостной характер, при
реактивное сопротивление возрастает от 0 до ∞ и имеетиндуктивный характер.

Рассмотрим зависимость тока в rLC контуре от частоты приложенного напряжения:

.

Анализ этого выражения показывает, что при
максимального значения
ток достигает в точке, соответствующей резонансной частоте.

Важной характеристикой rLC контура является ширина резонансной кривой или полоса пропускания, которую определяют как разность верхнейи нижнейчастот, для которых отношение
составляет
:

.

Частоты и, ограничивающие полосу пропускания, могут быть определены из соотношения

,

откуда следует, что на границах полосы пропускания реактивные сопротивления по абсолютной величине равны активному

.

Последнее соотношение эквивалентно равнству

,

Откуда
,
.

Разность частот и(полоса пропускания) определяется выражением

Если построить зависимость
в системе относительных координат
,
(рис.10.3), то ширина полосы пропускания оказывается равной затуханию контура.

В выражении напряжения на катушке индуктивности
оба сомножителя зависят от частоты. При
напряжение
. С увеличением частоты напряжение
возрастает и стремится к входному при
. Можно показать, что при
эта зависимость монотонна, а при
имеет максимум (рис. 10.4).

Напряжение на конденсаторе . При
ток в контуре отсутствует и все входное напряжение оказывается приложенным к конденсатору. При
напряжение на конденсаторе стремится к нулю. Для цепи, добротность которой превышает
, зависимость
имеет максимум; если
, напряжение на конденсаторе монотонно уменьшается с ростом частоты.

В том случае, когда электрическая цепь содержит элементы с емкостными, а также с индуктивными свойствами может возникнуть режим резонанса. Кроме того, резонанс в электрической цепи появляется в случае совпадения по фазе тока и напряжения. Реактивное сопротивление и проводимость на входе имеют нулевое значение. Полностью отсутствует сдвиг фаз, и цепь становится активной.

Причины резонанса

Резонанс напряжений появляется в случае последовательного соединения участков, содержащих сопротивления индуктивного и емкостного характера, а также резисторы. Такая простая цепь очень часто носит название последовательного или параллельного контура.

В резонансном контуре вовсе не обязательно присутствие резистивного сопротивления. Тем не менее, его необходимо учитывать при определении сопротивления проводников. Таким образом, резонансный режим полностью зависит от параметров и свойств электрической цепи. На него никак не влияют внешние источники электрической энергии.

Для того, чтобы определить условия, при которых возникает режим резонанса, необходимо проверить электрическую цепь с целью определения ее проводимости или комплексного . Кроме того, её мнимая часть должна быть выделена и приравнена к нулю.

Характеристики резонанса

Все параметры, входящие в цепь, и присутствующие в полученном уравнении, так или иначе, влияют на показатели, характеризующие резонансные явления. В зависимости от параметров, входящих в состав уравнения, решение может иметь несколько различных вариантов. При этом, все решения будут соответствовать собственному варианту и в дальнейшем обретать физический смысл.

В различных видах электро цепей, явление резонанса рассматривается, как правило, при анализе в случае нескольких вариантов. В этих же случаях может проводиться синтез цепи, в котором заранее заданы резонансные параметры.

Электрические цепи которые имеют большое количество связей и реактивных элементов, представляют собой серьезную проблему при проведении анализа. Их никогда не используют при синтезе с заранее заданными свойствами, поскольку далеко не всегда возможно получение желаемого результата. Поэтому, в практической деятельности производится исследование двухполюсных приборов самых простых конструкций и на основании полученных данных проводится создание более сложных цепей с заранее заданными параметрами.

Таким образом, резонанс электрической цепи представляет собой достаточно сложное явление, благодаря использованию в ней определенных элементов. Учет этого явления позволяет наиболее полно определить параметры и прочие характеристики.

Резонансы токов и напряжений

Резонанс является одним из самых распространенных в природе резонанса можно наблюдать в механических, электрических и даже тепловых системах. Без резонанса у нас не было бы радио, телевидения, музыки и даже качелей на детских площадках, не говоря уже об эффективнейших диагностических системах, применяемых в современной медицине. Одним из самых интересных и полезных видов резонанса в электрической цепи является резонанс напряжений.

Элементы резонансной цепи

Явление резонанса может возникнуть в так называемой RLC-цепи, содержащей следующие компоненты:

  • R - резисторы. Эти устройства, относящиеся к так называемым активным элементам электрической цепи, преобразуют электрическую энергию в тепловую. Другими словами, они удаляют энергию из контура и преобразуют ее в тепло.
  • L - индуктивность. Индуктивность в электрических цепях - аналог массы или инерции в механических системах. Этот компонент не очень заметен в электрической цепи, пока не попробуешь сделать в ней какие-либо изменения. В механике, например, таким изменением является изменение скорости. В электрической цепи - изменение тока. Если оно по какой-либо причине происходит, индуктивность противодействует такому изменению режима цепи.
  • С - обозначение для конденсаторов, которые представляют собой устройства, хранящие электрическую энергию подобно тому, как пружины сохраняют Индуктивность концентрирует и сохраняет магнитную энергию, в то время как конденсатор концентрирует заряд и тем самым хранит электрическую энергию.

Понятие резонансного контура

Ключевыми элементами резонансного контура являются индуктивность (L) и емкость (C). Резистор имеет тенденцию к гашению колебаний, поэтому он удаляет энергию из контура. При рассмотрении процессов, происходящих в колебательном контуре, мы его временно игнорируем, но необходимо помнить, что подобно силе трения в механических системах электрическое сопротивление в цепях невозможно устранить.

Резонанс напряжений и резонанс токов

В зависимости от способа соединения ключевых элементов резонансный контур может быть последовательным и параллельным. При подключении последовательного колебательного контура к источнику напряжения с частотой сигнала, совпадающей с собственной частотой, при определенных условиях в нем возникает резонанс напряжений. Резонанс в электрической цепи с параллельно соединенными реактивными элементами называется резонансом токов.

Собственная частота резонансного контура

Мы можем заставить систему колебаться с собственной частотой. Для этого сначала необходимо зарядить конденсатор, как показано на верхнем рисунке слева. Когда это будет выполнено, ключ переводится в положение, показанное на том же рисунке справа.

В момент времени "0" вся электрическая энергия сохраняется в конденсаторе, и ток в контуре равен нулю (рисунок внизу). Обратите внимание, что верхняя пластина конденсатора заряжена положительно, а нижняя - отрицательно. Мы не можем видеть колебания электронов в цепи, но мы можем измерить ток амперметром, а при помощи осциллоскопа отследить характер зависимости тока от времени. Отметим, что T на нашем графике - это время, необходимое для завершения одного колебания, носящего в электротехнике название "период колебания".

Ток течет по часовой стрелке (рисунок внизу). Энергия передается из конденсатора в На первый взгляд может показаться странным, что индуктивность содержит энергию, однако это похоже на кинетическую энергию, содержащуюся в движущейся массе.

Поток энергии возвращается обратно в конденсатор, но обратите внимание, что полярность конденсатора теперь изменилась. Другими словами, нижняя пластина теперь имеет положительный заряд, а верхняя пластина - отрицательный заряд (рисунок внизу).

Теперь система полностью обратилась, и энергия начинает поступать из конденсатора опять в индуктивность (рисунок внизу). В итоге энергия полностью возвращается к своей отправной точке и готова начать цикл заново.

Частота колебаний может быть аппроксимирована следующим образом:

  • F = 1/2π(LC) 0,5 ,

где: F - частота, L - индуктивность, C - емкость.

Рассмотренный на этом примере процесс отражает физическую суть резонанса напряжений.

Исследование резонанса напряжений

В реальных схемах LC всегда присутствует небольшое сопротивление, которое с каждым циклом уменьшает прирост амплитуды тока. После нескольких циклов ток уменьшается до нуля. Этот эффект называется "затухание синусоидального сигнала". Скорость затухания тока до нулевого значения зависит от величины сопротивления в цепи. Тем не менее, сопротивление не изменяет частоту колебаний резонансного контура. Если сопротивление достаточно велико, синусоидальные колебания в контуре не возникнут вообще.

Очевидно, там, где существует собственная частота колебаний, есть возможность возбуждения резонансного процесса. Мы делаем это, включая в последовательную цепь источник питания (АС), как показано на рисунке слева. Термин "переменный" означает, что выходное напряжение источника колеблется с определенной частотой. Если частота источника питания совпадает с собственной частотой контура, возникает резонанс напряжений.

Условия возникновения

Сейчас мы рассмотрим условия возникновения резонанса напряжений. Как показано на последнем рисунке, мы вернули резистор в контур. При отсутствии резистора в контуре ток в резонансной цепи будет нарастать до некоторого максимального значения, определяемого параметрами элементов контура и мощностью источника питания. Увеличение сопротивления резистора в резонансной цепи повышает тенденцию к затуханию тока в контуре, но не влияет на частоту резонансных колебаний. Как правило, режим резонанса напряжений не наступает, если сопротивление цепи резонанса удовлетворяет условию R = 2(L/C) 0,5 .

Использование резонанса напряжений для передачи радиосигнала

Явление резонанса напряжений является не только любопытнейшим физическим феноменом. Оно играет исключительную роль в технологии беспроводных коммуникаций - радио, телевидении, сотовой телефонии. Передатчики, используемые для беспроводной передачи информации, в обязательном порядке содержат схемы, предназначенные для резонирования на определенной для каждого устройства частоте, называемой несущей частотой. При помощи передающей антенны, подключенной к передатчику, он излучает на несущей частоте.

Антенна на другом конце приемо-передающего тракта получает этот сигнал и подает его на приемный контур, предназначенный для резонирования на частоте несущей. Очевидно, что антенна принимает множество сигналов на различных частотах, не говоря уже о фоновом шуме. Благодаря наличию на входе приемного устройства, настроенного на несущую частоту резонансного контура, приемник выбирает единственно правильную частоту, отсеивая все ненужные.

После детектирования амплитудно-модулированного (AM) радиосигнала, выделенный из него низкочастотный сигнал (НЧ) усиливается и подается на звуковоспроизводящее устройство. Это простейшая форма радиопередачи очень чувствительна к шумам и помехам.

Для повышения качества принимаемой информации разработаны и успешно используются другие, более совершенные способы передачи радиосигнала, которые также базируются на использовании настроенных резонансных систем.

Или FM-радио решает многие из проблем радиопередачи с амплитудно-модулированным передающим сигналом, однако это достигается ценой существенного усложнения системы передачи. В FM-радио системные звуки в электронном тракте превращаются в небольшие изменения несущей частоты. Часть оборудования, которое выполняет это преобразование, называется "модулятор" и используется с передатчиком.

Соответственно, к приемнику должен быть добавлен демодулятор для преобразования сигнала обратно в форму, которая может быть воспроизведена через громкоговоритель.

Другие примеры использования резонанса напряжения

Резонанс напряжений как основополагающий принцип заложен также в схемотехнике многочисленных фильтров, широко применяемых в электротехнике для устранения вредных и ненужных сигналов, сглаживания пульсаций и генерирования синусоидальных сигналов.

Начнём с основных определений.

Определение 1

Резонанс - это явление, при котором частота колебаний какой-либо системы увеличивается колебаниями внешней силы.

Вынужденные колебания, источником которых является внешняя сила, увеличивают даже те колебания, амплитуда которых имеет довольно небольшие значения. Максимальный резонанс с наибольшей амплитудой возможен именно при совпадении частот внешнего воздействия и рассматриваемой системы.

Примером резонанса является раскачивание моста ротой солдат. Частота шага солдат, являющаяся по отношению к мосту примером вынужденных колебаний, при этом синхронизирована и может совпасть с собственной частотой колебаний моста. В результате мост может разрушиться.

Электрический резонанс в физике считается одним из распространенных в мире физических явлений, без которого было бы невозможным, например, телевидение и диагностика с помощью медицинских аппаратов.

Одними из наиболее полезных видов резонанса в электрической цепи являются:

  • резонанс токов;
  • резонанс напряжений.

Возникновение резонанса в электрической цепи

Замечание 1

Возникновению резонанса в электрической цепи способствует резкое увеличение амплитуды стационарных собственных колебаний системы при условии совпадения частоты внешней стороны воздействия и соответствующей колебательной резонансной частоты системы.

Схема $RLC$ представляет электрическую цепь с соединенными последовательным или параллельным образом элементами (резистора, индуктора, конденсатора). Название $RLC$ состоит из простых символов электрических элементов: сопротивления, емкости, индуктивности.

Векторная диаграмма последовательной $RLC$-цепи представлена в одной из трех вариаций:

  • емкостной;
  • активной;
  • индуктивной.

В последней вариации резонанс напряжений возникает при условии нулевого сдвига фаз, и совпадении значений индуктивного и емкостного сопротивлений.

Резонанс напряжений

При последовательном соединении активного элемента $r$, емкостного $С$ и индуктивного $L$ в цепях переменного тока может возникать такое физическое явление, как резонанс напряжений. Колебания источника напряжения в этом случае будут равны по частоте колебаниям контура. При этом известна как полезность (например, в радиотехнике) этого явления, так и негативные последствия (для электрических установок большой мощности), например, при резком скачке напряжения в системах возможно возникновение неисправности или даже пожара.

Резонанс напряжений обычно достигается тремя способами:

  • подбором индуктивности катушки;
  • подбором емкости конденсатора;
  • подбором угловой частоты $w_0$.

При этом все значения емкости, частоты и индуктивности определяются с использованием формул:

$L_0 = \frac{1}{w^2C}$

$C_0 = \frac{1}{w^2L}$

Частота $w_0$ считается резонансной. При условии неизменности в цепи и напряжения, и активного сопротивления $r$, сила тока при резонансе напряжения в ней окажется максимальной и равной:

Это предполагает полную независимость силы тока от реактивного сопротивления цепи. В ситуации, когда реактивные сопротивления $XC = XL$ по своему значению будут превосходить активное сопротивление $r$, на зажимах катушки и конденсатора появится напряжение, существенно превосходящее напряжение на зажимах цепи.

Кратность превышения на зажимах емкостного и индуктивного элемента напряжения по отношению к сети определяется выражением:

$Q = \frac{U_c0}{U}$

Величина $Q$ характеризует резонансные свойства контура, называясь при этом добротностью контура. Также резонансные свойства характеризуются величиной $\frac{1}{Q}$, то есть - затуханием контура.

Резонанс токов через реактивные элементы

Резонанс токов появляется в электроцепях цепях переменного тока при условии параллельного соединения ветвей с разнохарактерными реактивными сопротивлениями. В резонансном режиме токов реактивная индуктивная проводимость цепи будет равнозначной ее собственной реактивной емкостной проводимости, т.е. $BL = BC$.

Колебания контура, частота которых имеет определённое значение, в данном случае совпадают по частоте с источником напряжения.

Простейшей электроцепью, в которой мы наблюдаем резонанс токов, считается цепь с параллельным соединением конденсатора с катушкой индуктивности.

Поскольку сопротивления реактивности равнозначны по модулю, амплитуды токов $I_c$ и $I_u$ будут одинаковыми и смогут достигать максимальной амплитуды. На основании первого закона Кирхгофа $IR$ равен току источника. Ток источника, иными словами, протекает только через резистор. При рассмотрении отдельного параллельного контура $LC$, на резонансной частоте его сопротивление оказывается бесконечно большим: $ZL = ZC$. При установлении гармонического режима с резонансной частотой, в контуре наблюдается обеспечение источником установившейся определенной амплитуды колебаний, а мощность источника тока при этом расходуется исключительно на пополнение потерь в активном сопротивлении.

Таким образом, у последовательной $RLC$ цепи импеданс оказывается минимальным на резонансной частоте и равным активному сопротивлению контура. В то же время, у параллельной $RLC$ цепи импеданс максимальный на резонансной частоте и считается равным сопротивлению утечки, фактически также активному сопротивлению контура. С целью обеспечения условий для резонанса силы тока или напряжения, требуется проверка электрической цепи для предопределения ее комплексного сопротивления или проводимости. Помимо этого, её мнимая часть должна приравниваться к нулю.

Применение явления резонанса

Хороший пример использования резонансного явления представляет электрический резонансный трансформатор, разработанный Николой Тесла ещё в 1891 году. Ученый проводил эксперименты на разных конфигурациях, состоящих в сочетании из двух, а зачастую и трех резонансных электроцепей.

Замечание 2

Термин «катушки Теслы» применяют к высоковольтным резонансным трансформаторам. Устройства используют при получении высокого напряжения, частоты переменного тока. Обычный трансформатор необходим для эффективной передачи энергии с первичной на вторичную обмотку, резонансный используется для временного хранения электроэнергии.

Устройство отвечает за управление воздушным сердечником настроенного резонансно трансформатора с целью получения высоких напряжений при малых значениях силы токов. Каждая обмотка обладает емкостью и функционирует в качестве резонансного контура. Для произведения наибольшего выходного напряжения первичный и вторичный контуры настраивают в резонанс друг с другом.

Резонансом называется такой режим пассивной цепи, содержащей катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входная реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

Рассмотрим последовательное соединение сопротивления, индуктивности и емкости (рис. 3-8). Такую цепь часто называет последовательным контуром. Для нее наступает резонанс, когда или , т. е.

При значения противоположных по фазе напряжений на индуктивности и емкости равны (рис. 3-11, б), поэтому резонанс в рассматриваемой цепи называют резонансом напряжений.

Напряжения на индуктивности и емкости при резонансе могут значительно превышать напряжение на зажимах цепи, которое равно напряжению на активном сопротивлении. Полное сопротивление цепи при минимально: , а ток при заданном

напряжении U достигает наибольшего значения . В теоретическом случае при полное сопротивление цепи в режиме резонанса также равно нулю, а ток при любом конечном значении напряжения U бесконечно велик. Точно так же бесконечно велики напряжения на индуктивности и емкости.

Из условия следует, что резонанса можно достичь, изменяя либо частоту напряжения источника, либо параметры цепи - индуктивность или емкость. Угловая частота, при которой наступает резонанс, называется резонансной угловой частотой

Индуктивное и емкостное сопротивления при резонансе

Величина называется характеристическим сопротивлением цепи или контура.

Отношение напряжения на индуктивности или емкости к напряжению, приложенному к цепи, при резонансе

называют добротностью контура или коэффициентом резонанса. Коэффициент резонанса указывает, во сколько раз напряжение на индуктивности или на емкости при резонансе больше, чем напряжение, приложенное к цепи: если . Наименование «добротность» контура будет разъяснено в следующем параграфе.

Для уяснения энергетических процессов при резонансе определим сумму энергий магнитного и электрического полей цепи Пусть ток в контуре . Тогда напряжение на емкости

Суммарная энергия

и, следовательно,

т. е. сумма энергий магнитного и электрического полей с течением времени не изменяется. Уменьшение энергии электрического поля сопровождается увеличением энергии магнитного поля и наоборот. Хаким образом, наблюдается непрерывный переход энергии из электрического поля в магнитное поле и обратно.

Энергия, поступающая в цепь от источника питания, в любой момент времени целиком переходит в тепло. Поэтому для источника питания вся цепь эквивалентна одному активному сопротивлению.

Наименование «резонанс» для рассмотренного режима цепи заимствовано из теории колебаний. Как известно, резонансом называется процесс вынужденных колебаний с такой частотой, при которой интенсивность колебаний при прочих равных условиях максимальна. Но характеризовать интенсивность колебательного процесса можно по различным проявлениям, максимумы которых наблюдаются при различных частотах. Поэтому нужно условиться о критерии резонанса.

В электрической цепи колеблются заряды. Можно было бы взять за критерий резонанса максимум амплитудного значения заряда на емкости, что соответствует максимальной амплитуде напряжения на емкости. Этот критерий определяет амплитудный резонанс. Для принятого в начале параграфа критерия резонанса ток при резонансе совпадает по фазе с приложенным напряжением, это так называемый фазовый резонанс. В рассматриваемой схеме (рис. 3-8) фазовый резонанс наступает при максимальной скорости движения колеблющихся зарядов или максимуме тока.

Если заряженный конденсатор замкнуть на катушку индуктивности, то в такой цепи при достаточно малом сопротивлении катушки наблюдается процесс затухающих колебаний напряжений и тока. Частота этих колебаний называется частотой собственных или свободных колебаний. Отметим, что частоты, при которых наблюдаются фазовый и амплитудный резонансы, не совпадают с частотой собственных колебаний (они совпадают только в теоретическом случае, когда сопротивление цепи равно нулю). Принятый здесь критерий резонанса применим и в том случае, когда в цепи вследствие большого сопротивления собственные колебания невозможны.