Технологии жк мониторов. Технологии изготовления дисплеев Как устроены органические OLED экраны

Плазменные дисплеи
(PDP - plasma display panel)

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer - светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Глубина монитора

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы - плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 см (см. рис. 1). Поэтому, несмотря на большой экран, они могут быть установлены в любом месте - на стене, под потолком, на столе.

Рисунок 1. Глубина монитора.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. рис. 2). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Конструкция ячейки

Рисунок 2. Конструкция ячейки.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд - часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Взаимодействия в PDP-ячейке

Рисунок 3. Взаимодействия в ячейке.

Высокая яркость (до 650 кд/м 2) и контрастность (до 3000:1) наряду с отсутствием дрожания являются большими преимуществами таких мониторов (Для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м 2 , а у телевизора - от 200 до 270 кд/м 2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях - даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Тип дисплея прямого свечения Принцип работы дисплея Основные достоинства и недостатки Особенности и перспективы развития
Кинескопные (CRT - Catod Ray Tube) Термоэмиссия электронов, ускоряющихся электростатическим полем. Отклонение электронного пучка (развертка растра) магнитным полем катушек ОС. Излучение света люминофоров основных цветов за счет энергии ускоренных электронов. 1. Воспроизводят полный цветовой треугольник (локус) человеческого зрения.2. Прекрасное разрешение и высокая контрастность.3. Большие масса и габариты. 1. Разработка кинескопов повышенного разрешения со сверх плоским экраном.2.Ведутся работы по повышению экономичности новых кинескопов.
Плазменные панели PDP (Plasma Display Panel) Свечение люминофоров основных цветов в результате воздействия УФ-излучения, возникающего при электрическом разряде в плазме. Плазма образуется при электрическом разряде постоянного (DC) или переменного (AC) тока в разряженном газе между двумя стеклянными пластинами дисплея. 1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3.Широкий угол обзора (более 160 градусов). Сегодняшние достижения плазменных панелей с диагональю 40 дюймов и более:яркость свечения экрана 350 кд/м2, контраст 300:1,разрешение 640х480 пикселей и более, экономичность порядка 10 Вт/люмен.
Плазма - адресуемые панели PALC (Plasma Adressing Liquid Crystal Display Device) Комбинированная конструкция - для управления (коммутации) активной ЖК-матрицы (LCD). В качестве ключа используется проводящий канал в разряженном газе (плазме). 1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3. Экономичночть.4. Возможность создания панелей высокого разрешения.5. Малый угол обзора (в последних моделях значительно расширен). Достижения панелей PALC: экономичность 1,2 мВт/люмен, серийно изготавливаются панели с диагональю 40-60 дюймов.

Сравнительная характеристика дисплеев прямого свечения.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости - панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

Итак, несмотря на довольно высокую цену, плазменные мониторы уже сейчас находят применение во многих отраслях - вложенные в них деньги быстро окупаются. Рост объемов продаж плазменных дисплеев и постоянное совершенствование конструкции позволяет предположить, что в перспективе цены на них упадут до уровня ЭЛТ-мониторов. По словам представителей Fujitsu, у этой компании есть четкая цель - довести стоимость плазменной панели до $100 за один дюйм диагонали. «Таким образом, 42-дюймовая панель будет стоить $4200, что уже весьма близко к стоимости ЭЛТ-моделей аналогичного размера», - говорят они. Когда точно это случится, предсказать пока трудно, но, по оценкам специалистов, в качестве крайнего срока можно рассматривать 2005 год.

Field Emission Display (FED)
дисплеи с электростатической (автоэлектронной) эмиссией

Технологии, которые применяются при создании мониторов, могут быть разделены на две группы: 1) мониторы, основанные на излучении света - традиционные ЭЛТ-мониторы и плазменные дисплеи, то есть устройства, элементы экрана которых излучают свет во внешний мир; 2) мониторы трансляционного типа - LCD мониторы. Одним из лучших технологических направлений в области создания мониторов, которая совмещает в себе особенности обоих технологий, описанных выше, является технология FED (Field Emission Display). Этот тип мониторов начал осваиваться в США и Европе в ответ на прорыв Японии в области ЖК-мониторов.

Мониторы FED основаны на процессе, который немного похож на тот, что применяется в ЭЛТ-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. Также их называют плоскими ЭЛТ. Главное отличие между ЭЛТ и FED мониторами состоит в том, что ЭЛТ-мониторы имеют три пушки, которые испускают три электронных луча, последовательно сканирующих экран, покрытый люминофорным слоем, а в FED-мониторе каждый пиксель изображения формируется излучением электронов с нескольких тысяч субмикрометровых остроконечных элементов поверхности. Благодаря этому не требуется высоковольтная эмиссия, и рабочее напряжение устройства может быть существенно снижено. Оно во многом зависит от материала эмитирующей поверхности. Например, если электроны генерируются молибденом, то на управляющие электроды достаточно подать 12 В. Но, несмотря на привлекательность низковольтной конструкции, оказалось, что для эффективного облучения люминофора все же требуется разогнать электроны в высоковольтном поле. Другая проблема FED-дисплеев - поддержание вакуума в экранах большого размера. Конструкция должна быть достаточно прочной, чтобы противостоять сжимающему атмосферному давлению.

FED мониторы обеспечивают высокую яркость изображения (600–800 кд/м 2) и угол обзора 160° во всех направлениях, а также имеют очень короткое время отклика, легки, тонки, потребляют мало электроэнергии, могут работать в широком температурном диапазоне. Но, к сожалению, еще не решена главная проблема FED-дисплеев - невысокий срок работы.

Типичные характеристики уже действующих FED"ов: размер по диагонали 10–27 см, толщина порядка нескольких миллиметров, допустимый интервал рабочей температуры от –5 до +85°С. По прогнозам, к концу 2001 года в мире будет производиться около миллиона 14,1-дюймовых FED-дисплеев (в год).

В Красноярском государственном техническом университете (КГТУ) также разработана технология производства FED-дисплеев. Производство экранов планируется проводить совместно с ОАО «Искра». Бизнес-план по «Организации производства полевых эмиссионных дисплеев» представлен в администрацию Красноярского края, прошел два этапа экспертизы и в настоящее время выставлен на постоянно действующей Российской выставке инвестиционных проектов.

Light Emission Plastics (LEP)

Начало LEP-технологии было положено в 1989 году, когда профессор Ричард Френд вместе с группой химиков научной лаборатории Кембриджского университета открыл светоизлучающие полимеры (Light Emitting Plastics). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT (Cambridge Display Technologies). Вскоре CDT нашла инвесторов, и в 1992 году началась разработка первого монитора, сделанного на основе LEP-технологии.

Светоизлучающие полимеры - это одна из разновидностей так называемых сопряженных полимеров, электропроводность разных представителей которых лежит в весьма широком диапазоне, и они, будучи расположенными между электродами, излучают свет. Эти полимеры (полифениленвинилен (PPV) и циано-PPV (CN-PPV)) являются полупроводниками, кроме того, еще и самоизолируемыми.

хим. строение PPV и CN-PPV

Рисунок 4. Химическое строение PPV и CN-PPV.

технология LEP

Рисунок 5. Конструкция LEP-дисплея.

первый LEP-монитор

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Однако, как оказалось, наиболее интересной и экономически перспективной областью применения светоизлучающих пластиков стало создание различных устройств воспроизведения визуальной информации, то есть дисплеев.

Рисунок 6. Конструкция LEP-дисплея.

Так тесное сотрудничество компании CDT с японской корпорацией Seiko Epson привело в конечном итоге к созданию первого в мире пластикового монитора (официально об этом было объявлено 16 февраля 1998 года). Представленный дисплей был монохромным (черно-желтым), имел разрешение 800x236 точек и площадь около 50 мм 2 при толщине всего в 2 мм. Каждым пикселем этого дисплея управлял отдельный тонкопленочный транзистор (TFT), а светоизлучающий полимер наносился на коммутирующую матрицу в жидком виде по технологии, аналогичной стандартной струйной печати.

Существует ряд причин, как чисто техничесих, так и коммерческих, которые делают LEP одним из главных кандидатов на роль основополагающей технологии мониторов следующего поколения. В первую очередь, это относительная простота применения тонкопленочных технологий на основе стандартных литографических процессов при низких затратах и высокой надежности производства. Немаловажной деталью является тот факт, что LEP-мониторы работают при напряжении питания всего около 5 В и имеют очень малый вес. Это позволяет использовать их в малогабаритных преносных устройствах (мобильные телефоны, дисплеи ноутбуков, калькуляторы, видеокамеры, цифровые фотоаппараты), которые питаются от аккумуляторов и батарей. Кроме того, устройство монитора достаточно простое - слои полимера наносят прямо на TFT-матрицу и на прозрачную подложку. Незначительное влияние соседних электронов, обусловленное хорошими изоляционными свойствами полимера, позволяет формировать изображение из самых малых элементов. Таким образом, можно получить практически любое разрешение и придать отдельному пикселю, а также экрану в целом произвольную форму. И, наконец, еще одно немаловажное преимущество LEP-мониторов - они очень тонкие. Это позволяет наносить различные поляризационные покрытия, обеспечивающие высокую контрастность изображения. Кроме того, в отличие от ЖК-дисплеев, угол обзора новых устройств может достигать 180° за счет того, что пластик излучает сам и не требует подсветки. Одной из главных проблем LEP-технологии является низкая эффективность излучения света (т.е. отношение его интенсивности к плотности проходящего тока). Изначально это соотношение составляло 0,01%, однако компания CDT смогла поднять этот показатель до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Существенным недостатком был и достаточно узкий диапазон цветов, в котором излучали пластики. Его границы удалось расширить, и в настоящее время он простирается от синего до ближнего инфракрасного (при этом его эффективность составляет около 1%). Полимерный экран нуждается в герметизации, чтобы избежать расслоения под действием водяных паров. Еще одна проблема заключалась в крайне низком сроке службы LEP-мониторов из-за обесцвечивания пластика под действием УФ-лучей, однако за счет использования многослойной структуры и других технических ухищрений его продлили до 5 лет (именно такая продолжительность эксплуатации дисплеев является сегодня характерной для ЭЛТ-мониторов). При различных температурных режимах срок службы LEP-мониторов составляе более 7000 часов при 20° С и около 1100 часов при 80° С без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, а срок хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности - более 18 месяцев. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.

К настоящему моменту CDT уже разработала полноцветный полимерный дисплей. Несмотря на то, что компании еще есть над чем поработать, можно утверждать, что по прошествии некоторого времени LEP-дисплеи составят достойную конкуренцию по качеству и цене как ЖК, так и ЭЛТ-мониторам. В настоящее время с CDT сотрудничают такие компании, как Seiko Epson, Intel, HP и др. В конце февраля 2000 года CDT объявила о завершении строительства предприятия по производству LEP-материалов. Объем инвестиций в этот проект оценивается в $3 млн. Ввод в строй нового предприятия не только позволит увеличить объем выпуска LEP-полимеров для исследовательских нужд самой компании, но и даст возможность осуществлять поставки компаниям-партнерам CDT.

И совсем недавно (летом 2000 года) компания CDT объявила о завершении разработки дисплея, который в буквальном смысле можно будет распечатать на струйном принтере. Но гибкое покрытие напыляют светоизлучающие полимеры, после чего к подложке достаточно подвести токопроводящие подложки, чтобы получить цветное изображение. Cтоимость такого монитора составляет 60% от цены сопоставимого по размерам ЖК-монитора.

Электролюминесцентные мониторы
(electroluminescent displays)

ЭЛ-мониторы похожи на ЖК, но имеют специальные доработки, обеспечивающие светоизлучение при туннельных переходах. Эти мониторы имеют высокие частоты развертки, хорошую надежность и яркость. Они работают в широком спектре температур (от –40 до +85° C). Однако для ЭЛ-мониторов необходимо высокое напряжение (>80 Вт), цвета у них не такие чистые, как у ЖК-моделей, и изображение на ярком свете тускнеет. Среднее время наработки до отказа (MBTF) составляет 100000 часов. Время отклика меньше 1 мс. Угол обзора более 160°.

Конструкция EL-дисплея

Рисунок 7. Конструкция EL-дисплея.

EL-дисплей

Рисунок 8. EL-дисплей.

Рисунок 9. Время отклика.

Угол обзора

Рисунок 10. Угол обзора.

Температурный диапазон

Рисунок 11. Температурный диапазон.

Вакуумные флуоресцентные мониторы
(vacuum fluorescent displays)

Эти мониторы могут работать при более низкой мощности, чем плазменные и электролюминесцентные мониторы. Эта технология использует высокоэффективное фосфорное покрытие, нанесенное непосредственно на каждый прозрачный анод в области экрана. Однако эти модели имеют относительно низкое разрешение, так как размер матрицы ограничивается шириной точек фосфора. Поэтому ее используют в низкоинформационных приложениях. Эта технология широко о себе заявила в такой области, как экраны объявлений, так как на таких мониторах изображение хорошо видно на ярком свету.

Рисунок 12. VFDisplay.

Электронная бумага

Компания E Ink (Кембридж, штат Масачусетс) и Bell Labs, исследовательское подразделение Lucent Techologies, основываясь на результатах исследований процесса электрофореза, выполненных в лаборатории MIT Media Lab, получили вещество, похожее на краску и способное изменять цвет под воздействием электрического поля.

Принцип работы «электронных чернил» пояснен рисунками:

Технология E Ink 1

Электронные чернила - цветная жидкость, состоящая из миллионов крошечных сфер, называемых микрокапсулами. Каждая микрокапсула имеет прозрачную оболочку, наполнитель синего цвета и микроскопические частицы белого пигмента.

Технология TN + film

Twisted Nematic + film (TN + film). Часть "film" в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно до 160°). Это самая простая и самая дешевая технология. Она существует достаточно давно и используется в большинстве проданных за последние несколько лет мониторов.

Достоинства технологии TN + film:

- низкая стоимость;
- минимальное время отклика пикселя на управляющее воздействие.

Недостатки технологии TN + film:

- средняя контрастность;
- проблемы с точной цветопередачей;
- сравнительно небольшие углы обзора.

Технология IPS

В 1995 году компанией Hitachi была разработана технология In-Plane Switching (IPS), предназначавшаяся для избавления от недостатков, присущих панелям, изготовленным по технологии TN + film. Маленькие углы обзора, весьма специфичные цвета и неприемлемое (на тот момент) время отклика подтолкнули компанию Hitachi к разработке новой технологии IPS, давшей хороший результат: приличные углы обзора и хорошую цветопередачу.

В IPS-матрицах кристаллы не образуют спираль, а поворачиваются при приложении электрического поля все вместе. Изменение ориентации кристаллов помогло добиться одного из основных преимуществ IPS-матриц - углы обзора удалось увеличить до 170° по горизонтали и вертикали. Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй поляризационный фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Отображение черного цвета является идеальным. При выходе из строя транзистора "битый" пиксель для панели IPS будет не белым, как для матрицы TN, а черным. При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению параллельно основе и пропускают свет.

Параллельное выравнивание жидких кристаллов потребовало размещения электродов гребенкой на нижней подложке, что значительно ухудшило контрастность изображения, потребовало более мощной подсветки для установки нормального уровня резкости и привело к высокому потреблению энергии и значительному времени. Поэтому время отклика IPS-панели, как правило, больше, чем у TN-панелей. Изготовленные по технологии IPS-панели оказываются заметно дороже. Впоследствии на базе IPS были также разработаны технологии Super-IPS (S-IPS) и Dual Domain IPS (DD-IPS), однако из-за высокой стоимости вывести этот тип панелей в лидеры производители так и не смогли.

Компания Samsung некоторое время выпускала панели, выполненные по технологии Advanced Coplanar Electrode (АСЕ) - аналог технологии IPS. Однако сегодня выпуск АСЕ-панелей свернут. На современном рынке технология IPS представлена мониторами с большой диагональю - 19 дюймов и более.

Значительное время отклика при переключении пикселя между двумя состояниями с лихвой компенсируется отличной цветопередачей, особенно у панелей, выполненных по модернизированной технологии под названием Super-IPS.

Super-IPS (S-IPS) . LCD-мониторы на S-IPS-панелях - это вполне разумный выбор для профессиональной работы с цветом. Увы, с контрастностью у S-IPS-панелей точно такие же проблемы, как и у IPS и TN+Film, - она сравнительно невелика, так как уровень черного составляет 0,5-1,0 кд/м2.

Наряду с этим, углы обзора если и не идеальны (при отклонении в сторону изображение заметно теряет контрастность), то весьма велики по сравнению с TN-панелями: сидя перед монитором, заметить какую-либо неравномерность цвета или контрастности по вине недостаточных углов обзора невозможно.

В настоящее время известны следующие типы матриц, которые можно считать производными от IPS:

Достоинства технологии S-IPS:

- отличная цветопередача;
- большие, чем у TN+Film-панелей, углы обзора.

Недостатки технологии S-IPS:

- высокая стоимость;
- значительное время отклика при переключении пикселя между двумя состояниями;
- неисправный пиксель или сабпиксель на таких матрицах постоянно остаётся в погашенном состоянии.

Этот тип панелей хорошо подходит для работы с цветом, но при этом мониторы на S-IPS-панелях вполне пригодны и для игр, некритичных ко времени отклика 5 - 20 мс.

Технология MVA

Технология IPS получилась сравнительно дорогой, это обстоятельство заставило других производителей разрабатывать собственные технологии. На свет появилась технология производства LCD-панелей Vertical Alignment (VA) компании Fujitsu, а затем Multidomain Vertical Alignment (MVA), предоставляющие пользователю разумный компромисс между углами обзора, скоростью и цветопередачей.

Итак, в 1996 году компания Fujitsu предложила еще одну технологию изготовления LCD-панелей VA - вертикальное выравнивание. Название технологии вводит в заблуждение, т.к. жидкокристаллические молекулы (в статическом состоянии) не могут быть полностью вертикально выравнены из-за выпячивания. Когда создается электрическое поле, кристаллы выравниваются горизонтально и свет подсветки не может пройти через различные слои панели.

Технология MVA - многодоменное вертикальное выравнивание - появилась через год после VA. Символ M в аббревиатуре MVA означает "многодоменный", т.е. множество областей в одной ячейке.

Суть технологии в следующем: каждый сабпиксель разбит на несколько зон, а поляризационные фильтры сделаны направленными. В настоящее время Fujitsu производит панели, в которых каждая ячейка включает до четырех таких доменов. С помощью выступов на внутренней поверхности фильтров каждый элемент разбит на зоны так, чтобы ориентация кристаллов в каждой конкретной зоне наиболее подходила для взгляда на матрицу с определенного угла, а кристаллы в разных зонах перемещались независимо. Благодаря этому удалось добиться отличных углов обзора без заметных цветовых искажений изображения - попавшие при отклонении наблюдателя от перпендикуляра к экрану в поле зрения более яркие зоны будут компенсироваться находящимися рядом более темными, поэтому контрастность упадет незначительно. При подаче же электрического поля кристаллы во всех зонах выстраиваются так, что практически независимо от угла наблюдения видна точка с максимальной яркостью.

Чего же удалось добиться в результате применения новой технологии?

Во-первых, хорошей контрастности - уровень черного у качественной панели может опускаться ниже 0,5 кд/м2 (превышать 600:1), что хоть и не позволяет на равных конкурировать с ЭЛТ-мониторами, но однозначно лучше результатов TN- или IPS-панелей. Черный фон экрана монитора на MVA-панели в темноте уже не выглядит столь отчетливо серым, да и неравномерность подсветки заметно меньше сказывается на изображении.

Более того, MVA-панели обеспечивают еще и весьма неплохую цветопередачу - не такую хорошую, как S-IPS, но вполне подходящую для большинства нужд. "Битые" пиксели выглядят черными, время отклика стало приблизительно в 2 раза меньше, чем для IPS- и старых TN-панелей. Т.о., наблюдается оптимальный компромисс практически во всех областях. Что же в сухом остатке?

Достоинства технологии MVA:

- небольшое время реакции;
- глубокий черный цвет (хорошая контрастность);
- отсутствие винтовой структуры кристаллов и двойного магнитного поля привело к минимальному потреблению электроэнергии;
- неплохая цветопередача (несколько уступающая S-IPS).

Однако две ложки дегтя несколько испортили сложившуюся идиллию:

- при уменьшении разницы между начальным и конечным состояниями пикселя время отклика увеличивается;
- технология получилась довольно дорогой.

К сожалению, теоретические преимущества этой технологии не были в полной мере реализованы на практике. 2003 год, все аналитики предсказывают блестящее будущее LCD-мониторам, оборудованным MVA-панелью, пока компания AU Optronics не представила TN+Film-панель со временем отклика всего 16 мс. По остальным параметрам она была не лучше, а в чем-то даже хуже существовавших 25-мс TN-панелей (уменьшившиеся углы обзора, плохая цветопередача), однако малое время отклика оказалось отличной маркетинговой приманкой для потребителей. Кроме того, дешевизна технологии на фоне продолжающихся ценовых войн, когда каждый лишний доллар за панель был для производителя тяжким бременем, подкрепила финансово-маркетинговую компанию. TN-панели и сегодня остаются самыми дешевыми (заметно дешевле и IPS-, и MVA-панелей). В результате сочетания этих двух факторов (удачной приманки для потребителя в виде малого времени отклика и низкой цены) в настоящий момент мониторы на панелях, отличных от TN+Film, выпускаются в ограниченных количествах. Исключение составляют разве что топ-модели Samsung на PVA да весьма дорогие мониторы на S-IPS-панелях, предназначенные для профессиональной работы с цветом.

Разработчик технологии MVA, компания Fujitsu, посчитала рынок LCD-мониторов для себя недостаточно интересным и сегодня не занимается разработками новых панелей, передав права на них компании AU Optronics.

Технология PVA

Вслед за Fujitsu компания Samsung разработала технологию Patterned Vertical Alignment (PVA), в общих чертах повторяющую технологию MVA и отличающуюся, с одной стороны, несколько большими углами обзора, но с другой - худшим временем отклика.

Судя по всему, одной из целей разработки было создание технологии, аналогичной MVA, но свободной от патентов Fujitsu и связанных с ними лицензионных выплат. Соответственно, все недостатки и достоинства PVA-панелей те же, что и у MVA.

Достоинства технологии PVA:

- отличная контрастность (уровень черного цвета у PVA-панелей может составлять всего 0,1-0,3 кд/м2);
- великолепные углы обзора (при оценке углов обзора согласно стандартному показателю падения контрастности до 10:1 получается, что их ограничивает не панель, а выступающая над ней пластиковая рамка экрана - у последних моделей мониторов на PVA заявлены углы 178°);
- хорошая цветопередача.

Недостатки технологии PVA:

- мониторы на PVA-панелях малопригодны для динамичных игр. Из-за большого времени отклика при переключении пикселя между близкими состояниями изображение будет заметно смазываться;
- не самая низкая стоимость.

Большой интерес к этому типу матриц вызывает их распространенность в продаже. Если монитор на хорошей 19-дюймовой MVA-матрице найти практически невозможно, то с PVA их разработчик (компания Samsung) старается регулярно выпускать в продажу новые модели. Справедливости ради надо заметить, что другие компании выпускают мониторы на PVA-матрицах ненамного охотнее, чем на MVA, но присутствие как минимум одного серьезного производителя, причем такого как Samsung, уже дает PVA-матрицам ощутимое преимущество.

Монитор на базе PVA-матриц - практически идеальный выбор для работы благодаря своим характеристикам, наиболее близким к ЭЛТ-мониторам среди всех типов матриц (если не учитывать большое время отклика - единственный серьезный недостаток PVA). 19-дюймовые модели на их основе легко найти в продаже, причем по вполне умеренным ценам (по сравнению, скажем, с мониторами на S-IPS-матрицах), так что при выборе рабочего монитора, для которого не слишком важно поведение в динамичных играх, обязательно надо обратить внимание на PVA.

В прошлом году компания Samsung представила технологию Dynamical Capacitance Compensation, DCC (динамическая компенсация емкости), которая, по заверениям инженеров, способна сделать время переключения пикселя не зависящим от разности между его конечным и начальным состояниями. В случае успешной реализации DCC PVA-панели окажутся одними из самых быстрых среди всех существующих сейчас типов панелей, сохранив при этом прочие свои достоинства.

Заключение

Производителей LCD-панелей значительно меньше, чем изготовителей мониторов. Это связано с тем, что производство панелей требует постройки недешевых (особенно в условиях постоянной конкуренции) высокотехнологичных фабрик. Изготовление монитора на базе готового LCD-модуля (обычно поставляется LCD-панель в сборе с лампами подсветки) сводится к обычным монтажным операциям, для которых не требуется ни сверхчистых помещений, ни какого-либо высокотехнологичного оборудования.

Сегодня крупнейшими производителями и разработчиками панелей являются совместное предприятие Royal Philips Electronics и LG Electronics под названием LG.Philips LCD и компания Samsung.

LG.Philips LCD в первую очередь специализируется на IPS-панелях, поставляя их сторонним крупным компаниям, например, Sony и NEC. Компания Samsung более известна TN+Film- и PVA-панелями, преимущественно для мониторов собственного производства.

Точно определить, на чьей панели собран тот или иной монитор, можно, только разобрав его, либо найдя неофициальную информацию в Интернете (официально производитель панели указывается редко). При этом информация о какой-либо конкретной модели распространяется только на эту модель и никак не затрагивает другие мониторы того же производителя. Например, в разных моделях мониторов Sony в разное время использовались панели от LG.Philips, AU Optronics и Chunghwa Picture Tubes (СРТ), а в мониторах NEC - помимо перечисленных, еще и компаний Hitachi, Fujitsu, Samsung и Unipac, не считая собственных панелей NEC. Более того, многие производители устанавливают в мониторы одной и той же модели, но разного времени выпуска различные панели - по мере появления более новых моделей панелей старые просто заменяются без изменения маркировки монитора.

Рассказывающая об отличиях IPS и TN матриц в рамках советов при покупке монитора или ноутбука. Пришло время поговорить о всех современных технологиях производства дисплеев , с которыми мы можем столкнуться и иметь представление о видах матриц в устройствах нашего поколения. Не путайте с LED, EDGE LED, Direct LED — это типы подсветки экранов и к технологии создания дисплеев имеют косвенное отношение.

Наверное, каждый может вспомнить свой монитор с электронно-лучевой трубкой, которым пользовался ранее. Правда и до сих пор встречаются пользователи и поклонники ЭЛТ технологии. В настоящее время экраны увеличились в диагонали, поменялись технологии изготовления дисплеев, стало все больше разновидностей в характеристиках матриц, обозначающихся аббревиатурами TN, TN-Film, IPS, Amoled и т.д.

Информация в данной статье поможет выбрать себе монитор, смартфон, планшет и другую различного рода технику. Помимо этого, позволит осветить технологии создания дисплеев, а также типы и особенности их матриц.

Пару слов о жидкокристаллических дисплеях

LCD (Liquid Crystal Display — жидкокристаллический дисплей) — это дисплей, изготовленный на основе жидких кристаллов, которые меняют свое расположение при подаче на них напряжения. Если вы близко подойдете к такому дисплею и внимательно присмотритесь к нему, то заметите, что он состоит из маленьких точек – пикселей (жидких кристаллов). В свою очередь каждый пиксель состоит из красного, синего и зеленого субпикселей. При подаче напряжения субпиксели выстраиваются в определенном порядке и пропускают через себя свет, таким образом формируя пиксель определенного цвета. Множество таких пикселей формируют изображение на экране монитора или другого устройства.

Первые мониторы массового производства оснащались матрицами TN — обладающими самой простой конструкцией, но которые нельзя назвать самым качественным типом матрицы. Хотя и среди данного типа матриц имеются весьма качественные экземпляры. Данная технология основана на том, что при отсутствии напряжения субпиксели пропускают через себя свет, формируя на экране белую точку. При подаче напряжения на субпиксели, они выстраиваются в определенном порядке, образуя собой пиксель заданного цвета.

Недостатки TN матрицы

  • По той причине, что стандартный цвет пикселя, при отсутствии напряжения, белый, данный тип матриц обладает не самой лучшей цветопередачей. Цвета отображаются более тускло и блекло, а черный цвет выглядит скорее темно-серым.
  • Еще одним главным недостатком TN матрицы являются малые углы обзора. Частично с данной проблемой попытались справиться улучшением технологии TN до TN+Film, с помощью дополнительного слоя, нанесенного на экран. Углы обзора стали больше, но все равно оставались далеки от идеала.

В настоящий момент TN+Film матрицы полностью заменили TN.

Достоинства TN матрицы

  • малое время отклика
  • относительно недорогая себестоимость.

Делая выводы, можно утверждать, что при необходимости в недорогом мониторе для офисной работы или серфинга в интернете, мониторы с TN+Film матрицами подойдут наилучшим образом.

Главное отличие технологии IPS матриц от TN — перпендикулярное расположение субпикселей при отсутствии напряжения, которые образуют черную точку. То есть, в состоянии спокойствия экран остается черным.

Преимущества IPS матриц

  • лучшая цветопередача относительно экранов с TN матрицами: вы имеете яркие и сочные цвета на экране, а черный цвет остается действительно черным. Соответственно, при подаче напряжения пиксели меняют свой цвет. Учитывая эту особенность, владельцам смартфонов и планшетов с IPS-экранами можно посоветовать использовать темные цветовые схемы и обои на рабочем столе, тогда смартфон от аккумулятора будет работать немного дольше.
  • большие углы обзора. В большинстве экранов они составляют 178°. Для мониторов, а особенно для мобильных устройств (смартфонов и планшетов) эта особенность является важной при выборе пользователем гаджета.

Недостатки IPS матриц

  • большое время отклика экрана. Это влияет на отображение в динамических картинках, таких как игры и фильмы. В современных IPS панелях с временем отклика дела обстоят получше.
  • большая стоимость по сравнению с TN.

Подводя итоги, телефоны и планшеты лучше выбирать с IPS-матрицами, и тогда от использования устройства пользователь будет получать огромное эстетическое удовольствие. Матрица для монитора не является столь критичной, современные .

AMOLED-экраны

Последние модели смартфонов оснащают AMOLED-дисплеями. Данная технология создания матриц основана на активных светодиодах, которые начинают светиться и отображать цвет при подаче на них напряжения.

Давайте рассмотрим особенности Amoled матрицы :

  • Цветопередача . Насыщенность и контрастность таких экранов выше требуемого. Цвета отображаются настолько ярко, что у некоторых пользователей могут уставать глаза при продолжительной работе со своим смартфоном. Зато черный цвет отображается еще более черным, чем даже в IPS-матрицах.
  • Энергопотребление дисплея . Так же как и в IPS, отображение черного цвета требует меньше энергии, чем отображение определенного цвета, и тем более белого. Но разница в энергопотреблении между отображением черного и белого цвета в AMOLED-экранах намного больше. Для отображения белого цвета необходимо в несколько раз больше энергии, чем для отображения черного.
  • «Память картинки» . При продолжительном выводе статического изображения могут оставаться следы на экране, а это в свою очередь сказывается на качестве отображения информации.

Также из-за своей довольно высокой стоимости AMOLED-экраны пока используются только в смартфонах. Мониторы, построенные на такой технологии, стоят неоправданно дорого.

VA (Vertical Alignment) — данную технологию, разработанную Fujitsu, можно рассматривать как компромисс между TN и IPS матрицами. В матрицах VA кристаллы в выключенном состоянии расположены перпендикулярно плоскости экрана. Соответственно черный цвет обеспечивается максимально чистый и глубокий, но при повороте матрицы относительно направления взгляда, кристаллы будут видны не одинаково. Для решения проблемы применяется мультидоменная структура. Технология Multi-Domain Vertical Alignment (MVA) предусматривает выступы на обкладках, которые определяют направление поворота кристаллов. Если два поддомена поворачивается в противоположных направлениях, то при взгляде сбоку один из них будет темнее, а другой светлее, таким образом для человеческого глаза отклонения взаимно компенсируются. В матрицах PVA, разработанных Samsung нет выступов, и в выключенном состоянии кристаллы строго вертикальны. Для того, чтобы кристаллы соседних субдоменов поворачивались в противоположных направлениях, нижние электроды сдвинуты относительно верхних.

Для уменьшения времени отклика в матрицах Premium MVA и S-PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive. Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS, время отклика немного уступает TN, углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA.

MVA и PVA матрицы обладают отличной контрастностью и углами обзора, но вот с временем отклика дела обстоят похуже – оно растет при уменьшении разницы между конечным и начальным состояниями пиксела. Ранние модели таких мониторов были почти непригодны для динамичных игр, а сейчас они показывают результаты близкие к TN матрицам. Цветопередача *VA матриц, конечно, уступает IPS-матрицам, но остается на высоком уровне. Тем не менее, благодаря высокой контрастности, эти мониторы будут отличным выбором для работы с текстом и фотографией, с чертежной графикой, а также в качестве домашних мониторов.

В заключении могу сказать, что выбор всегда за вами…

Еще не так давно на рабочих столах пользователей большое место занимали мониторы с электронно-лучевой трубкой. , а тем более смартфоны, только начали появляться на полках магазинов. Прошло не так много времени, и громоздкие ЭЛТ-мониторы начали сменять первые жидкокристаллические дисплеи, а карманы наполняли разного рода гаджеты, в которых необходимым атрибутом был экран.

Со временем экраны стали не только прибавлять в диагонали, но также менялась технология работы дисплея, и в характеристиках к устройствам мы все чаще начали замечать такие непонятные аббревиатуры как TN, TN-Film, IPS, Amoled и т.д.

Данная статья была написана для обычных потребителей, которые хотят выбрать себе монитор, смартфон или планшет. Поэтому здесь не будет множества терминов и глубокого внедрения в ту или иную технологию, а будет описана работа экранов доступным языком, понятным рядовому пользователю. Я надеюсь, данная статья прольет свет на новые технологии в области отображения информации, а также поможет людям в дальнейшем выборе устройства, которым будет приятно пользоваться.

LCD (Liquid crystal display), он же ЖКД (жидкокристаллический дисплей), построен на основе жидких кристаллов, которые меняют свое расположение при подаче на них напряжения. Если внимательно присмотреться к монитору, то можно заметить, что он состоит из маленьких точек – пикселей. Это и есть жидкие кристаллы. В свою очередь каждый пиксель состоит из красного, синего и зеленого субпикселей. При подаче напряжения субпиксели выстраиваются в определенном порядке и пропускают через себя свет, таким образом формируя пиксель определенного цвета.


Из большого количества таких пикселей и формируется изображение на экране монитора или другого устройства.

TN и TN+Film матрицы

Первые массовые мониторы оснащались матрицами TN. Это самый простой, но в то же время не самый качественный тип матрицы. Данная технология базируется на том, что при отсутствии напряжения субпиксели пропускают через себя свет, образуя на экране белую точку. При подаче напряжения на субпиксели, они выстраиваются в определенном порядке, образуя собой пиксель заданного цвета.

Из-за того, что стандартный цвет пикселя, при отсутствии напряжения, белый, данный тип матриц обладает не самой лучшей цветопередачей. Цвета отображаются более тускло и блекло, а черный цвет выглядит скорее темно-серым.


Еще одним главным недостатком TN матрицы являются малые углы обзора. Частично с данной проблемой попытались справиться улучшением технологии TN до TN+Film, с помощью дополнительного слоя, нанесенного на экран. Углы обзора стали больше, но все равно оставались далеки от идеала. В данный момент TN+Film матрицы полностью заменили TN.

Но, кроме недостатков, в таких матрицах есть и свои достоинства. К ним принадлежит малое время отклика и относительно недорогая себестоимость.

Учитывая все достоинства и недостатки, можно сказать, что если вам необходим недорогой монитор для периодического использования в работе с документами или для серфинга в интернете, то мониторы с TN+Film матрицами отлично подойдут для данных нужд.

IPS матрицы

Главным отличием от технологии IPS от TN является расположение субпикселей при отсутствии напряжения. Они располагаются перпендикулярно друг к другу, образуя черную точку. Таким образом, в состоянии спокойствия экран остается черным. Это дает преимущество в цветопередаче перед экранами с TN матрицами. Цвета на экране выглядят ярко, сочно, а черный цвет остается действительно черным. При подаче напряжения пиксели меняют свой цвет. Принимая эту особенность во внимание, владельцам смартфонов и планшетов с IPS-экранами можно посоветовать использовать темные цветовые схемы и обои на рабочем столе, тогда смартфон от аккумулятора будет работать немного дольше.

Также приятной особенностью IPS матриц являются большие углы обзора. В большинстве экранов они составляют 178°. Для мониторов, а особенно для смартфонов и планшетов эта особенность является важной при выборе пользователем девайса.

Но, естественно, присутствуют и недостатки. Главным недостатком является большее время отклика экрана. Это влияет на отображение в динамических картинках, таких как игры и фильмы. В современных IPS панелях было улучшено время отклика, так что теперь этот недостаток не является столь критичным.

Еще одной особенностью IPS-экранов является их большая стоимость по сравнению с TN. Но в последнее время цена на IPS-панели снизилась и стала доступна большинству пользователей.

Таким образом, телефоны и планшеты лучше выбирать с IPS-матрицами, и тогда от использования устройства пользователь будет получать огромное эстетическое удовольствие. Матрица для монитора не является столь критичной, но при возможности рекомендуется обратить внимание на современные IPS-мониторы.

AMOLED-экраны

В последние несколько лет смартфоны начали оснащать AMOLED-дисплеями и при этом очень рекламировать такие телефоны покупателям. Так давайте разберемся, что нам пытаются донести пиар-менеджеры компаний, а что в их словах обычный рекламный трюк.

Технология создания AMOLED-матриц основана на активных светодиодах, которые начинают светиться и отображать цвет при подаче на них напряжения. Что это нам дает? А дает нам это довольно противоречивые особенности.
Начнем с цветопередачи. Насыщенность и контрастность таких экранов зашкаливают. Цвета отображаются настолько ярко, что у некоторых пользователей могут уставать глаза при продолжительной работе со своим смартфоном. Зато черный цвет отображается еще более черным, чем даже в IPS-матрицах.


Такие яркие цвета очень влияют на энергопотребление дисплея. Так же как и в IPS, отображение черного цвета требует меньше энергии, чем отображение определенного цвета, и тем более белого. Но разница в энергопотреблении между отображением черного и белого цвета в AMOLED-экранах намного больше. Для отображения белого цвета необходимо в несколько раз больше энергии, чем для отображения черного.

Еще одной негативной особенностью является «память картинки». При продолжительном выводе статического изображения могут оставаться следы на экране, а это в свою очередь сказывается на качестве отображения информации.

Также из-за своей довольно высокой стоимости AMOLED-экраны пока используются только в смартфонах. Мониторы, построенные на такой технологии, стоят неоправданно дорого.

Заключение

В завершении статьи хотелось бы сказать, что восприятие изображения довольно субъективное для каждого пользователя. Для кого-то и TN матрицы будет вполне достаточно, а кто-то будет менять десятки мониторов, пока не найдет свой идеал. Таким образом, несмотря на все технологии создания дисплеев, выбор всегда остается за пользователем и зависит от его индивидуального восприятия картинки на экране. А как работают экраны в режиме сенсорного ввода, вы можете прочитать .

В настоящее время существует большое количество типов или видов мониторов , имеющих отличия в технологии изготовления экрана, и как следствие, качество воспроизведения изображения и применения в различных областях деятельности. Перечислим основные виды мониторов и дадим краткую характеристику:

Электронно‐лучевые мониторы. Исторически самые первые. Состоят из вакуумной электронной трубки, в которой пучки электронов, с помощью магнитной системы отклонения, формируются и управляются. Эти пучки электронов бомбардируют слой люминофора на котором проецируется изображение, возникает свечение и, в результате, возникает изображение. Поскольку данные мониторы практически вытеснены повсеместно, более детально их рассматривать не будем.

Основные недостатки данных мониторов:

⁃Большие габариты, связанные с принципиальным устройством электронно‐лучевой трубки.

⁃Большая масса, связанная с первой характеристикой.

⁃Искажения изображения на переферии монитора, связанные с физическим устройством электронно‐ лучевой трубки и принципиальной невозможностью производства плоских мониторов по этой технологии.

⁃Конструктивная необходимость использования высокого напряжения, до 50 кВольт, что влияет не лучшим образм на энергосберегающие характеристики, а также безопасность.

Жидкокристаллические мониторы или LCD по‐английски. Эффект изменения положения молекулы жидкого кристалла под действием напряжения был известен давно. Практический эффект был получен ещё в начале 60‐х годов прошлого века. Тогда впервые появились миниатюрные дисплеи в наручных часах, калькуляторах, различных индикаторах. С течением времени технология совершенствовалась, хорошим толчком послужило появление ноутбуков и других портативных компьютеров.

Применение данной технологии в производстве мониторов позволило решить полностью проблемы, которые были у их предшественников, электронно‐лучевых мониторов. Габариты значительно уменьшились, в десятки раз. Теперь нет необходимости специально выделять большое место под монитор. В связи с этим значительно уменьшился вес самого монитора. Теперь по массе он сопоставим с ноутбуком. Естественно, это касается не очень больших мониторов. Искажения, характерные для электронно‐лучевых мониторов, исчезли, поскольку экран жидкокристаллической матрицы действительно плоский.

Однако, жидкокристаллическим мониторам присущи свои недостатки, которые фирмы‐производители пытаются преодолеть, внедряя новые технологии. К таким недостаткам относятся более низкая контрастность и насыщенность цвета изображения. Время отклика матрицы(появилась новая характеристика для LCD) на первых порах была большой, это приводило к тому, что динамические сцены показывались с артефактами изображения. Связано это с инерционностью переключения состояния жидких кристаллов. Малые углы обзора, когда одна и таже картинка, если смотреть сбоку, сверху или снизу начинает искажать или инвертировать цвета.

Для преодоления этих недостатков фирмы‐производители начали совершенствовать технологию жидкокристаллических матриц, что привело к созданию следующих типов мониторов, различающихся по технологии изготовления матрицы:

⁃TN+film(Twisted Nematic или скрученные нематически), исторически первые жидкокристаллические матрицы, в которой кристаллы выстроены друг за другом, но расположены относительно плоскости дисплея или взгляда по спирали. При подаче напряжения эта спираль «скручивается» на величину, зависящую от напряжения. Пиксел окрашивается в тот или иной цвет.

⁃S‐IPS, разработка фирмы Hitachi, кристаллы закручены не в спираль, а выстроены друг за другом параллельно. Это позволяет получить более качественные цвета, но время отклика увеличивается, так как нужно больше времени на поворот всего массива кристаллов.

⁃MVA/PVA, компания Fujitsu разработала очередную технологию, устраняющую недостатки цветопередачи технологии TN и уменьшающее время отклика по сравнению с технологией S‐IPS. Для этого пришлось существенно усложнить строение и матрицы, и фильтров‐поляризатров. Фирма Samsung разработала собственную технологию PVA, чтобы не платить лицензионные сборы. Технологии эти похожи, а отличие в большей контрастности изображения.

⁃PLS, технология разработанная фирмой Samsung, позиционируется в способности дать более контрастное изображение по сравнению с технологией S‐IPS, и дешевле на 10% по сравнению с ней. Технология изготовления и устройства матрицы неизвестна. До недавнего времени данный тип матриц использовался в мобильных устройствах.

Плазменные мониторы или PDP по‐английски. Используется эффект свечения инертных газов под высоким напряжением. Данная технология избавлена от недостатков, присущих жидкокристаллическим матрицам. Яркость и контрастность картинки на высоте, и поскольку элементы матрицы получаются достаточно большими, что влияет на разрешающую способность не лучшим образом, это практически не видно. Изображение динамических сцен также передаются без искажений. Углы обзора большие, картинку видно без потери цвета с любого направления. Толщина экрана стала ещё меньше, по сравнению с жидкокристаллическими мониторами.

OLED‐мониторы или мониторы с матрицей из органических светодиодов. Являются приемниками жидкокристаллических мониторов. К преимуществам относятся чрезвычайно низкое энергопотребление, так как данные светодиоды светятся сами по себе. Нет нужды в лампе подсветки. Чрезвычайно высокая контрастность, высокое быстродействие, время отклика измеряется в микросекундах, в отличие от миллисекунд в жидкокристаллических мониторах. Глубина OLED‐монитора ещё тоньше, чем у плазменных мониторов. А углы обзора состовляют 180 градусов, так как мы смотрим на сами светодиоды, а не на фильтры, как у жидкокристаллических мониторов.

Несмотря на такие выдающиеся характеристики есть и недостатки. Это недолговечность OLED‐матрицы при дороговизне подобных мониторов является решающим фактором низкого спроса на них. А это влияет на скорость внедрения разработок, ведь фирмы несут убытки. Зачем тратить большие ресурсы на убыточное дело?

Но несмотря на это, разработчики не оставляют попытки решить указанные проблемы, так как OLED‐технология позволяет делать фантастические вещи: сворачивать экран в трубочку, создавать прозрачные табло, использовать в широком диапозоне температур и т.д. Для любителей подобных вещей продаются OLED‐мониторы, стоимостью порядка 8000$, с диагональю экрана около 60 см.

На сегодняшний день это самые распространённые виды мониторов , за исключением самого первого и последнего в нашем списке. Времена первого уже прошли, а у последнего еще всё впереди. Рассмотрим более детально технологии изготовления матриц мониторов.